An ensemble-based approach for multi-view multi-label classification

被引:9
|
作者
Gibaja E.L. [1 ]
Moyano J.M. [1 ]
Ventura S. [1 ]
机构
[1] Department of Computing and Numerical Analysis, University of Córdoba, Córdoba
关键词
Classification; Ensemble; Multi-feature; Multi-label; Multi-view;
D O I
10.1007/s13748-016-0098-9
中图分类号
学科分类号
摘要
Multi-label classification with multiple data views is a recent research field not much explored. This more flexible learning approach allows each pattern to be represented by several sets of attributes and each pattern can have simultaneously associated several labels. In this work, an ensemble-based approach, which enables the fusion of views at decision level by majority voting, is proposed. The study carried out on four data sets considering 27 multi-label evaluation metrics shows that our proposal overcomes and improves the results obtained by the individual views as well as the execution time and the performance of the classic approach which concatenates all the views in a single set of features. © 2016, Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:251 / 259
页数:8
相关论文
共 50 条
  • [11] MULTI-FEATURE FUSION BASED ON SUPERVISED MULTI-VIEW MULTI-LABEL CANONICAL CORRELATION PROJECTION
    Maeda, Keisuke
    Takahashi, Sho
    Ogawa, Takahiro
    Haseyama, Miki
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 3936 - 3940
  • [12] Weighted Ensemble Classification of Multi-label Data Streams
    Wang, Lulu
    Shen, Hong
    Tian, Hui
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2017, PT II, 2017, 10235 : 551 - 562
  • [13] ENSEMBLE OF LABEL SPECIFIC FEATURES FOR MULTI-LABEL CLASSIFICATION
    Wei, Xiaoya
    Yu, Ziwei
    Zhang, Changqing
    Hu, Qinghua
    2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2018,
  • [14] Consistency and diversity neural network multi-view multi-label learning
    Zhao, Dawei
    Gao, Qingwei
    Lu, Yixiang
    Sun, Dong
    Cheng, Yusheng
    KNOWLEDGE-BASED SYSTEMS, 2021, 218
  • [15] A Novel Online Stacked Ensemble for Multi-Label Stream Classification
    Buyukcakir, Alican
    Bonab, Hamed
    Can, Fazli
    CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2018, : 1063 - 1072
  • [16] Ensemble of classifier chains and decision templates for multi-label classification
    Rocha, Victor Freitas
    Varejao, Flavio Miguel
    Vieira Segatto, Marcelo Eduardo
    KNOWLEDGE AND INFORMATION SYSTEMS, 2022, 64 (03) : 643 - 663
  • [17] Ensemble of classifier chains and decision templates for multi-label classification
    Victor Freitas Rocha
    Flávio Miguel Varejão
    Marcelo Eduardo Vieira Segatto
    Knowledge and Information Systems, 2022, 64 : 643 - 663
  • [18] Embedded feature fusion for multi-view multi-label feature selection
    Hao, Pingting
    Gao, Wanfu
    Hu, Liang
    PATTERN RECOGNITION, 2025, 157
  • [19] Consistent and specific multi-view multi-label learning with correlation information
    Li, Yiting
    Zhang, Jia
    Wu, Hanrui
    Du, Guodong
    Long, Jinyi
    INFORMATION SCIENCES, 2025, 687
  • [20] A Multi-Label Multi-View Learning Framework for In-App Service Usage Analysis
    Fu, Yanjie
    Liu, Junming
    Li, Xiaolin
    Xiong, Hui
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2018, 9 (04)