An ensemble-based approach for multi-view multi-label classification

被引:9
|
作者
Gibaja E.L. [1 ]
Moyano J.M. [1 ]
Ventura S. [1 ]
机构
[1] Department of Computing and Numerical Analysis, University of Córdoba, Córdoba
关键词
Classification; Ensemble; Multi-feature; Multi-label; Multi-view;
D O I
10.1007/s13748-016-0098-9
中图分类号
学科分类号
摘要
Multi-label classification with multiple data views is a recent research field not much explored. This more flexible learning approach allows each pattern to be represented by several sets of attributes and each pattern can have simultaneously associated several labels. In this work, an ensemble-based approach, which enables the fusion of views at decision level by majority voting, is proposed. The study carried out on four data sets considering 27 multi-label evaluation metrics shows that our proposal overcomes and improves the results obtained by the individual views as well as the execution time and the performance of the classic approach which concatenates all the views in a single set of features. © 2016, Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:251 / 259
页数:8
相关论文
共 50 条
  • [1] Multi-view based multi-label propagation for image annotation
    He, Zhanying
    Chen, Chun
    Bu, Jiajun
    Li, Ping
    Cai, Deng
    NEUROCOMPUTING, 2015, 168 : 853 - 860
  • [2] Semi-Supervised Multi-view Multi-label Classification Based on Nonnegative Matrix Factorization
    Wang, Guangxia
    Zhang, Changqing
    Zhu, Pengfei
    Hu, Qinghua
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, PT II, 2017, 10614 : 340 - 348
  • [3] Robust Mapping Learning for Multi-view Multi-label Classification with Missing Labels
    Ren, Weijieying
    Zhang, Lei
    Jiang, Bo
    Wang, Zhefeng
    Guo, Guangming
    Liu, Guiquan
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT (KSEM 2017): 10TH INTERNATIONAL CONFERENCE, KSEM 2017, MELBOURNE, VIC, AUSTRALIA, AUGUST 19-20, 2017, PROCEEDINGS, 2017, 10412 : 543 - 551
  • [4] Global and local multi-view multi-label learning
    Zhu, Changming
    Miao, Duoqian
    Wang, Zhe
    Zhou, Rigui
    Wei, Lai
    Zhang, Xiafen
    NEUROCOMPUTING, 2020, 371 : 67 - 77
  • [5] Multi-view Multi-label Learning via Optimal Classifier Chain
    Liu, Yiming
    Hao, Xingwei
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2017, PT I, 2018, 10735 : 336 - 345
  • [6] A Multi-View Multi-Scale Neural Network for Multi-Label ECG Classification
    Yang, Shunxiang
    Lian, Cheng
    Zeng, Zhigang
    Xu, Bingrong
    Zang, Junbin
    Zhang, Zhidong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2023, 7 (03): : 648 - 660
  • [7] An ensemble approach to multi-view multi-instance learning
    Cano, Alberto
    KNOWLEDGE-BASED SYSTEMS, 2017, 136 : 46 - 57
  • [8] Multi-View Multi-Label Learning With View-Label-Specific Features
    Huang, Jun
    Qu, Xiwen
    Li, Guorong
    Qin, Feng
    Zheng, Xiao
    Huang, Qingming
    IEEE ACCESS, 2019, 7 : 100979 - 100992
  • [9] Multi-view multi-label learning with double orders manifold preserving
    Yin, Jun
    Zhang, Wentao
    APPLIED INTELLIGENCE, 2023, 53 (12) : 14703 - 14716
  • [10] Multi-view multi-label learning with double orders manifold preserving
    Jun Yin
    Wentao Zhang
    Applied Intelligence, 2023, 53 : 14703 - 14716