On weakly closed subgroups of finite groups

被引:0
|
作者
Zhencai Shen
Yingyi Chen
Shirong Li
机构
[1] China Agricultural University,Department of Mathematics of College of Science
[2] China Agricultural University,College of Information and Electrical Engineering
[3] Guangxi University,Department of Mathematics
来源
Monatshefte für Mathematik | 2014年 / 175卷
关键词
Weakly closed subgroup; Nilpotent group; Supersolvable group; 20D10; 20D20;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is a finite group and H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}, K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} are subgroups of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}. We say that H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document} is weakly closed in K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} with respect to G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} if, for any g∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g \in G$$\end{document} such that Hg≤K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{g}\le K$$\end{document}, we have Hg=H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{g}=H$$\end{document}. In particular, when H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document} is a subgroup of prime-power order and K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} is a Sylow subgroup containing it, H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document} is simply said to be a weakly closed subgroup of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} or weakly closed in G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}. In the paper, we investigate the structure of finite groups by means of weakly closed subgroups.
引用
收藏
页码:629 / 638
页数:9
相关论文
共 50 条
  • [41] The influence of SΦ-supplemented subgroups on the structure of finite groups
    He, Xuanli
    Guo, Qinghong
    Wang, Ju
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (12) : 5296 - 5302
  • [42] On nearly SS-embedded subgroups of finite groups
    Lijun Huo
    Wenbin Guo
    Alexander A. Makhnev
    Chinese Annals of Mathematics, Series B, 2014, 35 : 885 - 894
  • [43] Finite groups with permuted strongly generalized maximal subgroups
    Gorbatova, Yulia, V
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2022, (80): : 26 - 38
  • [44] Finite groups with subnormal second or third maximal subgroups
    Yu. V. Lutsenko
    A. N. Skiba
    Mathematical Notes, 2012, 91 : 680 - 688
  • [45] On abnormal maximal subgroups of finite groups
    Ballester-Bolinches, A.
    Cossey, John
    Esteban-Romero, R.
    ISCHIA: GROUP THEORY 2008, 2009, : 1 - +
  • [46] On finite groups with cyclic Abelian subgroups
    Maznichenko S.V.
    Ukrainian Mathematical Journal, 1998, 50 (5) : 839 - 841
  • [47] Finite groups with sσ-quasinormal subgroups
    Zhong, Xuecheng
    Li, Youxin
    Meng, Wei
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025,
  • [48] Gradewise properties of subgroups of finite groups
    W. Guo
    A. N. Skiba
    Siberian Mathematical Journal, 2015, 56 : 384 - 392
  • [49] On Finite Groups with HC-Subgroups
    Guo, Xiuyun
    Wu, Na
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (05)
  • [50] Gradewise properties of subgroups of finite groups
    Guo, W.
    Skiba, A. N.
    SIBERIAN MATHEMATICAL JOURNAL, 2015, 56 (03) : 384 - 392