On weakly closed subgroups of finite groups

被引:0
|
作者
Zhencai Shen
Yingyi Chen
Shirong Li
机构
[1] China Agricultural University,Department of Mathematics of College of Science
[2] China Agricultural University,College of Information and Electrical Engineering
[3] Guangxi University,Department of Mathematics
来源
Monatshefte für Mathematik | 2014年 / 175卷
关键词
Weakly closed subgroup; Nilpotent group; Supersolvable group; 20D10; 20D20;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is a finite group and H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}, K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} are subgroups of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}. We say that H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document} is weakly closed in K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} with respect to G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} if, for any g∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g \in G$$\end{document} such that Hg≤K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{g}\le K$$\end{document}, we have Hg=H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{g}=H$$\end{document}. In particular, when H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document} is a subgroup of prime-power order and K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} is a Sylow subgroup containing it, H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document} is simply said to be a weakly closed subgroup of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} or weakly closed in G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}. In the paper, we investigate the structure of finite groups by means of weakly closed subgroups.
引用
收藏
页码:629 / 638
页数:9
相关论文
共 50 条
  • [21] On Weakly s-supplemented Subgroups of Finite Groups
    Huang, Yujian
    Li, Yangming
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2009, 33 (03) : 443 - 450
  • [22] Finite groups with minimal weakly BNA-subgroups
    He, Xuanli
    Huang, Muhong
    Wang, Jing
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (09)
  • [23] The influence of weakly pronormal subgroups on the supersolvability of finite groups
    Asaad, M.
    ACTA MATHEMATICA HUNGARICA, 2023, 170 (02) : 655 - 660
  • [24] On weakly HC-embedded subgroups of finite groups
    Asaad, M.
    Ramadan, M.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (05)
  • [25] WEAKLY s-SUPPLEMENTALLY EMBEDDED MINIMAL SUBGROUPS OF FINITE GROUPS
    Zhao, Tao
    Li, Xianhua
    Xu, Yong
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2011, 54 : 799 - 807
  • [26] On weakly 3-permutable subgroups of finite groups
    Heliel, A. A.
    Al-Shomrani, M. M.
    Al-Gafri, T. M.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (05)
  • [27] On weakly H-subgroups of finite groups II
    Chen, Ruifang
    Li, Xiaoli
    Zhao, Xianhe
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (09) : 4009 - 4015
  • [29] The influence of weakly-supplemented subgroups on the structure of finite groups
    Kong, Qingjun
    Liu, Qingfeng
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2014, 64 (01) : 173 - 182
  • [30] FINITE GROUPS WITH WEAKLY S-SEMIPERMUTABLY EMBEDDED SUBGROUPS
    Shen, Zhencai
    Zhang, Jinshan
    Wu, Shulin
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2012, 11 : 111 - 124