Multiple complex-valued solutions for nonlinear magnetic Schrödinger equations

被引:0
作者
Silvia Cingolani
Louis Jeanjean
Kazunaga Tanaka
机构
[1] Politecnico di Bari,Dipartimento di Meccanica, Matematica e Management
[2] Université Bourgogne Franche-Comté,Laboratoire de Mathématiques (UMR CNRS 6623)
[3] Waseda University,Department of Mathematics, School of Science and Engineering
来源
Journal of Fixed Point Theory and Applications | 2017年 / 19卷
关键词
Nonlinear Schrödinger equations; Magnetic fields; Semiclassical limit; Complex-valued solutions; Cuplength; 35Q55; 35J20; 35Q40; 35B06;
D O I
暂无
中图分类号
学科分类号
摘要
We study, in the semiclassical limit, the singularly perturbed nonlinear Schrödinger equations 0.1LA,Vħu=f(|u|2)uinRN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} L^{\hbar }_{A,V} u = f(|u|^2)u \quad \hbox {in}\quad \mathbb {R}^N \end{aligned}$$\end{document}where N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \ge 3$$\end{document}, LA,Vħ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\hbar }_{A,V}$$\end{document} is the Schrödinger operator with a magnetic field having source in a C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} vector potential A and a scalar continuous (electric) potential V defined by 0.2LA,Vħ=-ħ2Δ-2ħiA·∇+|A|2-ħidivA+V(x).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} L^{\hbar }_{A,V}= -\hbar ^2 \Delta -\frac{2\hbar }{i} A \cdot \nabla + |A|^2- \frac{\hbar }{i}\mathrm{div}A + V(x). \end{aligned}$$\end{document}Here, f is a nonlinear term which satisfies the so-called Berestycki-Lions conditions. We assume that there exists a bounded domain Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}^N$$\end{document} such that m0≡infx∈ΩV(x)<infx∈∂ΩV(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} m_0 \equiv \inf _{x \in \Omega } V(x) < \inf _{x \in \partial \Omega } V(x) \end{aligned}$$\end{document}and we set K={x∈Ω|V(x)=m0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K = \{ x \in \Omega \ | \ V(x) = m_0\}$$\end{document}. For ħ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar >0$$\end{document} small we prove the existence of at least cupl(K)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{cupl}}(K) + 1$$\end{document} geometrically distinct, complex-valued solutions to (0.1) whose moduli concentrate around K as ħ→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar \rightarrow 0$$\end{document}.
引用
收藏
页码:37 / 66
页数:29
相关论文
共 59 条
  • [1] Alves CO(2011)Multiple solutions for a nonlinear Schrödinger equation with magnetic fields Comm. Partial Differ. Equ. 36 1565-1586
  • [2] Figueiredo GM(1997)Semiclassical states of nonlinear Schrödinger equations Arch. Ration. Mech. Anal. 140 285-300
  • [3] Furtado MF(2001)Multiplicity results for some nonlinear Schrödinger equations with potentials Arch. Ration. Mech. Anal. 159 253-271
  • [4] Ambrosetti A(2003)A semilinear Schrödinger equations in the presence of a magnetic field Arch. Ration. Mech. Anal. 170 277-295
  • [5] Badiale M(2005)The effect of the domain’s configuration space on the number of nodal solutions of singularly perturbed elliptic equations Topol. Methods Nonlinear Anal. 26 109-133
  • [6] Cingolani S(1983)Nonlinear scalar field equations. I. Existence of a ground state Arch. Ration. Mech. Anal. 82 313-345
  • [7] Ambrosetti A(1983)Abstract critical point theorems and applications to some nonlinear problems Nonlinear Anal. Theory Methods Appl. 7 981-1012
  • [8] Malchiodi A(2007)Standing waves for nonlinear Schrödinger equations with a general nonlinearity Arch. Ration. Mech. Anal. 185 185-200
  • [9] Secchi S(2008)Standing waves for nonlinear Schrödinger equations with a general nonlinearity: one and two dimensional cases Commun. Partial Differ. Equ. 33 1113-1136
  • [10] Arioli G(2013)Semi-classical standing waves for nonlinear Schrödinger equations at structurally stable critical points of the potential J. Eur. Math. Soc. (JEMS) 15 1859-1899