Regularity in Sobolev and Besov Spaces for Parabolic Problems on Domains of Polyhedral Type

被引:0
作者
Stephan Dahlke
Cornelia Schneider
机构
[1] Philipps-University Marburg,FB12 Mathematics and Computer Science
[2] Friedrich-Alexander University Erlangen-Nuremberg,Applied Mathematics III
来源
The Journal of Geometric Analysis | 2021年 / 31卷
关键词
Parabolic evolution equations; Besov spaces; Kondratiev spaces; Adaptive algorithms; Primary 35B65, 35K55, 46E35; Secondary 35L15, 35A02, 35K05, 65M12;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the regularity of solutions to linear and nonlinear evolution equations extending our findings in Dahlke and Schneider (Anal Appl 17(2):235–291, 2019, Thms. 4.5, 4.9, 4.12, 4.14) to domains of polyhedral type. In particular, we study the smoothness in the specific scale Bτ,τr,1τ=rd+1p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ B^r_{\tau ,\tau }, \ \frac{1}{\tau }=\frac{r}{d}+\frac{1}{p}\ $$\end{document} of Besov spaces. The regularity in these spaces determines the approximation order that can be achieved by adaptive and other nonlinear approximation schemes. We show that for all cases under consideration the Besov regularity is high enough to justify the use of adaptive algorithms.
引用
收藏
页码:11741 / 11779
页数:38
相关论文
共 58 条
[1]  
Agmon S(1959)Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I Comm. Pure Appl. Math. 12 623-727
[2]  
Douglis A(2008)Parabolic mean values and maximal estimates for gradients of temperatures J. Funct. Anal. 255 1939-1956
[3]  
Nierenberg L(2010)On Besov regularity of temperatures J. Fourier Anal. Appl. 16 1007-1020
[4]  
Aimar H(2012)Parabolic Besov Regularity for the Heat Equation Constr. Approx. 36 145-159
[5]  
Gómez I(2008)Regularity of solutions of initial-boundary value problems for parabolic equations in domains with conical points J. Differential Equations 245 1801-1818
[6]  
Iaffei B(2016)-regularity for the Cauchy-Dirichlet problem for parabolic equations in convex polyhedral domains Acta Math. Vietnam. 41 731-742
[7]  
Aimar H(2010)Interface and mixed boundary value problems on Doc. Math. 15 687-745
[8]  
Gómez I(2013)-dimensional polyhedral domains Electron. J. Probab. 18 1-41
[9]  
Iaffei B(2020)On the J. Fourier Anal. Appl. 26 10-2173
[10]  
Aimar H(2019)-regularity and Besov smoothness of stochastic parabolic equations on bounded Lipschitz domains Math. Nachr. 292 2165-77