On One Extremal Problem for Mutual Information

被引:0
作者
V. V. Prelov
机构
[1] Kharkevich Institute for Information Transmission Problems,
[2] Russian Academy of Sciences,undefined
来源
Problems of Information Transmission | 2022年 / 58卷
关键词
mutual information; coupling of discrete probability distributions; error probability;
D O I
暂无
中图分类号
学科分类号
摘要
We address the problem of finding the maximum of the mutual information \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I(X;Y)$$\end{document} of two finite-valued random variables \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y$$\end{document} given only the value of their coupling, i.e., the probability \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Pr\{X=Y\}$$\end{document}. We obtain explicit lower and upper bounds on this maximum, which in some cases are optimal.
引用
收藏
页码:217 / 230
页数:13
相关论文
共 7 条
  • [1] Erokhin V(1958)ε-Entropy of a Discrete Random Variable Teor. Veroyatnost. i Primenen 3 103-107
  • [2] Ho S-W(2010)On the Interplay between Conditional Entropy and Error Probability IEEE Trans. Inform. Theory 56 5930-5942
  • [3] Verdú S(2005)On Estimation of Information via Variation Probl. Peredachi Inf. 41 3-8
  • [4] Pinsker MS(2007)Estimating Mutual Information via Kolmogorov Distance IEEE Trans. Inform. Theory 53 3280-3282
  • [5] Zhang Z(2011)Generalization of a Pinsker Problem Probl. Peredachi Inf. 47 17-37
  • [6] Prelov VV(2016)On Some Extremal Problems for Mutual Information and Entropy Probl. Peredachi Inf 52 3-13
  • [7] Prelov VV(undefined)undefined undefined undefined undefined-undefined