New iterative methods for finding solutions of Hammerstein equations

被引:0
作者
Oganeditse A. Boikanyo
Habtu Zegeye
机构
[1] Botswana International University of Science and Technology,Department of Mathematics and Statistical Sciences
来源
Journal of Applied Mathematics and Computing | 2023年 / 69卷
关键词
Hammerstein equation; Monotone mapping; Weak convergence; Strong convergence; Bifunction; 47H05; 47H09; 47H10; 47J25; 47J26; 47H30;
D O I
暂无
中图分类号
学科分类号
摘要
Let G:H→H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G:H\rightarrow H$$\end{document} and K:H→H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K: H\rightarrow H$$\end{document} be monotone mappings that are either sequentially weakly continuous or continuous, where H is a real Hilbert space. In this work, we introduce two new iterative methods for approximating solutions of the Hammerstein equation u+GKu=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u+GKu=0$$\end{document}, if they exist. The first iterative method is shown to always converge weakly to an element in the solution set of the Hammerstein equation if this solution set is nonempty. The second iterative method is a modification of the first method to upgrade weak convergence to strong convergence. Convergence results are obtained without requiring the maps to be bounded. Numerical examples are provided to demonstrate the convergence of one of these methods. Comparisons with some existing methods show that the method is cost effective in terms of the number of iterations required to obtain a solution and the computational time.
引用
收藏
页码:1465 / 1490
页数:25
相关论文
共 92 条
  • [1] Allouch C(2019)Legendre superconvergent Galerkin-collocation type methods for Hammerstein equations J. Comput. Appl. Math. 353 253-264
  • [2] Sbibih D(2016)Nonlinear Hammerstein equations and functions of bounded Riesz–Medvedev variation Topol. Methods Nonlinear Anal. 47 319-332
  • [3] Tahrichi M(2021)An inertial-type algorithm for approximation of solutions of Hammerstein integral inclusions in Hilbert spaces Fixed Point Theory Algorithms Sci. Eng. 2021 22-145
  • [4] Appell J(1994)From optimization and variational inequality to equilibrium problems Math. Stud. 63 123-332
  • [5] Benavides TD(2017)The generalized contraction proximal point algorithm with square-summable errors Afr. Mat. 28 321-572
  • [6] Bello AU(1974)Some new results about Hammerstein equations Bull. Am. Math. Soc. 80 568-78
  • [7] Omojola MT(1975)Existence theorems for nonlinear integral equations of Hammerstein type Bull. Am. Math. Soc. 81 73-147
  • [8] Yahaya J(1975)Nonlinear integral equations and systems of Hammerstein type Adv. Math. 18 115-566
  • [9] Blum E(1963)The solvability of nonlinear functional equations Duke Math. J. 30 557-882
  • [10] Oettli W(1967)Nonlinear mappings of non-expansive and accretive operators in Banach spaces Bull. Am. Math. Soc. 73 875-1353