Approximating inverse FEM matrices on non-uniform meshes with H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document}-matrices

被引:0
作者
Niklas Angleitner
Markus Faustmann
Jens Markus Melenk
机构
[1] Technische Universität Wien,
[2] Institute of Analysis and Scientific Computing (Inst. E 101),undefined
关键词
FEM; -matrices; Approximability; Non-uniform meshes; Primary: 65F50; Secondary: 65F30, 65N30;
D O I
10.1007/s10092-021-00413-w
中图分类号
学科分类号
摘要
We consider the approximation of the inverse of the finite element stiffness matrix in the data sparse H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document}-matrix format. For a large class of shape regular but possibly non-uniform meshes including algebraically graded meshes, we prove that the inverse of the stiffness matrix can be approximated in the H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document}-matrix format at an exponential rate in the block rank. Since the storage complexity of the hierarchical matrix is logarithmic-linear and only grows linearly in the block-rank, we obtain an efficient approximation that can be used, e.g., as an approximate direct solver or preconditioner for iterative solvers.
引用
收藏
相关论文
共 38 条
[31]  
Rokhlin V(undefined)undefined undefined undefined undefined-undefined
[32]  
Lintner M(undefined)undefined undefined undefined undefined-undefined
[33]  
Rokhlin V(undefined)undefined undefined undefined undefined-undefined
[34]  
Tausch J(undefined)undefined undefined undefined undefined-undefined
[35]  
White J(undefined)undefined undefined undefined undefined-undefined
[36]  
von Petersdorff T(undefined)undefined undefined undefined undefined-undefined
[37]  
Schwab Ch(undefined)undefined undefined undefined undefined-undefined
[38]  
Schneider R(undefined)undefined undefined undefined undefined-undefined