Approximating inverse FEM matrices on non-uniform meshes with H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document}-matrices

被引:0
作者
Niklas Angleitner
Markus Faustmann
Jens Markus Melenk
机构
[1] Technische Universität Wien,
[2] Institute of Analysis and Scientific Computing (Inst. E 101),undefined
关键词
FEM; -matrices; Approximability; Non-uniform meshes; Primary: 65F50; Secondary: 65F30, 65N30;
D O I
10.1007/s10092-021-00413-w
中图分类号
学科分类号
摘要
We consider the approximation of the inverse of the finite element stiffness matrix in the data sparse H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document}-matrix format. For a large class of shape regular but possibly non-uniform meshes including algebraically graded meshes, we prove that the inverse of the stiffness matrix can be approximated in the H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document}-matrix format at an exponential rate in the block rank. Since the storage complexity of the hierarchical matrix is logarithmic-linear and only grows linearly in the block-rank, we obtain an efficient approximation that can be used, e.g., as an approximate direct solver or preconditioner for iterative solvers.
引用
收藏
相关论文
共 38 条
  • [1] Bebendorf M(2005)Efficient inversion of Galerkin matrices of general second-order elliptic differential operators with nonsmooth coefficients Math. Comp. 74 1179-1199
  • [2] Bebendorf M(2007)Why finite element discretizations can be factored by triangular hierarchical matrices SIAM J. Numer. Anal. 45 1472-1494
  • [3] Bebendorf M(2003)Existence of Numer. Math. 95 1-28
  • [4] Hackbusch W(1979)-matrix approximants to the inverse FE-matrix of elliptic operators with Numer. Math. 33 447-471
  • [5] Babuška I(2010)-coefficients Numer. Math. 115 165-193
  • [6] Kellogg RB(1975)Direct and inverse error estimates for finite elements with mesh refinements Rev. Française Automat. Informat. Recherche Opérationnelle Sér. 9 77-84
  • [7] Pitkäranta J(2015)Approximation of solution operators of elliptic partial differential equations by Numer. Math. 131 615-642
  • [8] Börm S(2016)- and Math. Comp. 85 119-152
  • [9] Clément Ph(2017)-matrices IMA J. Numer. Anal. 37 1211-1244
  • [10] Faustmann M(2003)Approximation by finite element functions using local regularization Computing 70 295-334