A Note on Reflectionless Jacobi Matrices

被引:0
作者
V. Jakšić
B. Landon
A. Panati
机构
[1] McGill University,Department of Mathematics and Statistics
[2] Harvard University,Department of Mathematics
[3] Aix-Marseille Université,undefined
[4] CNRS,undefined
[5] CPT,undefined
[6] UMR 7332,undefined
[7] Case 907,undefined
[8] Université de Toulon,undefined
[9] CNRS,undefined
[10] CPT,undefined
[11] UMR 7332,undefined
[12] FRUMAM,undefined
来源
Communications in Mathematical Physics | 2014年 / 332卷
关键词
Jacobi Matrix; Jacobi Matrice; Jacobi Operator; Diagonal Matrix Element; Commun Math Phys;
D O I
暂无
中图分类号
学科分类号
摘要
The property that a Jacobi matrix is reflectionless is usually characterized either in terms of Weyl m-functions or the vanishing of the real part of the boundary values of the diagonal matrix elements of the resolvent. We introduce a characterization in terms of stationary scattering theory (the vanishing of the reflection coefficients) and prove that this characterization is equivalent to the usual ones. We also show that the new characterization is equivalent to the notion of being dynamically reflectionless, thus providing a short proof of an important result of Breuer et al. (Commun Math Phys 295:531–550, 2010). The motivation for the new characterization comes from recent studies of the non-equilibrium statistical mechanics of the electronic black box model and we elaborate on this connection.
引用
收藏
页码:827 / 838
页数:11
相关论文
共 20 条
  • [1] Breuer J.(2010)Equality of the spectral and dynamical definitions of reflection Commun. Math. Phys. 295 531-550
  • [2] Ryckman E.(1978)Scattering theory for systems with different spatial asymptotics on the left and right Commun. Math. Phys. 63 277-301
  • [3] Simon B.(1983)Almost periodic Schrödinger operators III. The absolutely continuous spectrum in one dimension Commun. Math. Phys. 90 398-411
  • [4] Davies E.B.(1996)On isospectral sets of Jacobi operators Commun. Math. Phys. 181 631-645
  • [5] Simon B.(1997)One-dimensional scattering theory for quantum systems with nontrivial spatial asymptotics Diff. Integral Eqs. 10 521-546
  • [6] Deift P.(1997)Inverse spectral analysis with partial information on the potential, I. The case of an a.c. component in the spectrum Helv. Phys. Acta 70 66-71
  • [7] Simon B.(2013)Entropic fluctuations of XY quantum spin chains and reflectionless Jacobi matrices Ann. Henri Poincaré 14 1775-1800
  • [8] Gesztesy F.(1997)Almost periodic Jacobi matrices with homogeneous spectrum, infinite dimensional Jacobi inversion, and Hardy spaces of character-automorphic functions J. Geom. Anal. 7 387-435
  • [9] Krishna M.(undefined)undefined undefined undefined undefined-undefined
  • [10] Teschl G.(undefined)undefined undefined undefined undefined-undefined