Asymptotic Stability of the Relativistic Boltzmann Equation for the Soft Potentials

被引:0
作者
Robert M. Strain
机构
[1] University of Pennsylvania,Department of Mathematics
来源
Communications in Mathematical Physics | 2010年 / 300卷
关键词
Boltzmann Equation; Asymptotic Stability; Mild Solution; Collision Operator; Energy Inequality;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper it is shown that unique solutions to the relativistic Boltzmann equation exist for all time and decay with any polynomial rate towards their steady state relativistic Maxwellian provided that the initial data starts out sufficiently close in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^\infty_\ell}$$\end{document}. If the initial data are continuous then so is the corresponding solution. We work in the case of a spatially periodic box. Conditions on the collision kernel are generic in the sense of Dudyński and Ekiel-Jeżewska (Commun Math Phys 115(4):607–629, 1985); this resolves the open question of global existence for the soft potentials.
引用
收藏
页码:529 / 597
页数:68
相关论文
共 74 条
[1]  
Andréasson H.(1996)Regularity of the gain term and strong SIAM J. Math. Anal. 27 1386-1405
[2]  
Andréasson H.(2004) convergence to equilibrium for the relativistic Boltzmann equation Math. Meth. Appl. Sci. 27 2231-2240
[3]  
Calogero S.(1967)On blowup for gain-term-only classical and relativistic Boltzmann equations Commun. Math. Phys. 4 352-364
[4]  
Illner R.(1989)On the Cauchy problem of the relativistic Boltzmann equation Ann. Physics 195 376-419
[5]  
Bichteler K.(1980)Relativistic Boltzmann theory in Commun. Math. Phys. 74 71-95
[6]  
Boisseau B.(1980) + 1 spacetime dimensions Commun. Math. Phys. 74 97-109
[7]  
van Leeuwen W.A.(2004)The Boltzmann equation with a soft potential. I. Linear, spatially- homogeneous J. Math. Phys. 45 4042-4052
[8]  
Caflisch R.E.(2005)The Boltzmann equation with a soft potential. II. Nonlinear, spatially-periodic Invent. Math. 159 245-316
[9]  
Caflisch R.E.(1978)The Newtonian limit of the relativistic Boltzmann equation Phys. A 90 450-486
[10]  
Calogero S.(1989)On the trend to global equilibrium for spatially inhomoge- neous kinetic systems: the Boltzmann equation Comm. Pure Appl. Math. 42 729-757