Banach spaces with the (strong) Gelfand–Phillips property

被引:0
|
作者
T. Banakh
S. Gabriyelyan
机构
[1] Ivan Franko National University,Department of Mathematics
[2] Jan Kochanowski University,undefined
[3] Ben-Gurion University of the Negev,undefined
来源
Banach Journal of Mathematical Analysis | 2022年 / 16卷
关键词
Banach space; Gelfand–Phillips property; Strong Gelfand–Phillips property; 46A03; 46E10; 46E15;
D O I
暂无
中图分类号
学科分类号
摘要
Several new characterizations of the Gelfand–Phillips property are given. We define a strong version of the Gelfand–Phillips property and prove that a Banach space has this stronger property iff it embeds into c0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_0$$\end{document}. For an infinite compact space K, the Banach space C(K) has the strong Gelfand–Phillips property iff C(K) is isomorphic to c0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_0$$\end{document} iff K is countable and has finite scattered height.
引用
收藏
相关论文
共 50 条
  • [21] Towards strong Banach property (T) for SL(3,ℝ)
    Mikael de la Salle
    Israel Journal of Mathematics, 2016, 211 : 105 - 145
  • [22] STRONG CONVERGENCE TO ZEROS OF ACCRETIVE OPERATORS IN BANACH SPACES
    Nakajo, Kazuhide
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2006, 7 (01) : 71 - 81
  • [23] Strong convergence results for nonself multimaps in Banach spaces
    Shahzad, N.
    Zegeye, H.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (02) : 539 - 548
  • [24] Diametral strong diameter two property of Banach spaces is stable under direct sums with 1-norm
    Haller, Rainis
    Pirk, Katriin
    Poldvere, Mart
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2016, 20 (01): : 101 - 105
  • [25] On the fixed point property for orbital contractions in Banach spaces
    Najeh Redjel
    Abdelkader Dehici
    The Journal of Analysis, 2022, 30 : 621 - 635
  • [26] A note on ball-covering property of Banach spaces
    Cheng, Lixin
    Kadets, Vladimir
    Wang, Bo
    Zhang, Wen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (01) : 249 - 253
  • [27] The Grothendieck property for injective tensor products of Banach spaces
    Ji, Donghai
    Xue, Xiaoping
    Bu, Qingying
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (04) : 1153 - 1159
  • [28] The Grothendieck property for injective tensor products of Banach spaces
    Donghai Ji
    Xiaoping Xue
    Qingying Bu
    Czechoslovak Mathematical Journal, 2010, 60 : 1153 - 1159
  • [29] Banach spaces of homogeneous polynomials without the approximation property
    Dineen, Sean
    Mujica, Jorge
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (02) : 367 - 374
  • [30] Erratum to: Ball-covering property of Banach spaces
    Lixin Cheng
    Israel Journal of Mathematics, 2011, 184 : 505 - 507