Several new characterizations of the Gelfand–Phillips property are given. We define a strong version of the Gelfand–Phillips property and prove that a Banach space has this stronger property iff it embeds into c0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$c_0$$\end{document}. For an infinite compact space K, the Banach space C(K) has the strong Gelfand–Phillips property iff C(K) is isomorphic to c0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$c_0$$\end{document} iff K is countable and has finite scattered height.