On Approximations of First Integrals for Strongly Nonlinear Oscillators

被引:0
|
作者
S. B. Waluya
W. T. van Horssen
机构
[1] Delft University of Technology,Department of Applied Mathematical Analysis, Faculty of Information Technology and Systems
来源
Nonlinear Dynamics | 2003年 / 32卷
关键词
integrating factor; integrating vector; first integral; perturbation method; asymptotic approximation of first integral; periodic solution; bifurcations; elliptic function; elliptic integrals; generalized Rayleigh oscillator equation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper strongly nonlinear oscillator equations will be studied.It will be shown that the recently developed perturbation method based onintegrating factors can be used to approximate first integrals. Not onlyapproximations of first integrals will be given, butit will also be shown how in a rather efficient way the existence and stability oftime-periodic solutions can be obtained from these approximations. In particularthe generalized Rayleigh oscillator equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\ddot X + 9X + \mu X^2 + {\lambda }X^3 = \varepsilon (\dot X - \dot X^3 )$$ \end{document} will be studied in detail, and it will beshown that at least five limit cycles can occur.
引用
收藏
页码:109 / 141
页数:32
相关论文
共 50 条
  • [1] On approximations of first integrals for strongly nonlinear oscillators
    Waluya, SB
    Van Horssen, WT
    NONLINEAR DYNAMICS, 2003, 32 (02) : 109 - 141
  • [2] On approximations of first integrals for a strongly nonlinear forced oscillator
    Waluya, SB
    Van Horssen, WT
    NONLINEAR DYNAMICS, 2003, 33 (03) : 225 - 252
  • [3] On Approximations of First Integrals for a Strongly Nonlinear Forced Oscillator
    S. B. Waluya
    W. T. van Horssen
    Nonlinear Dynamics, 2003, 33 : 225 - 252
  • [4] On asymptotic approximations of first integrals for a strongly nonlinear forced oscillator
    Waluya, SB
    Van Horssen, WT
    EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 1146 - 1148
  • [5] On approximations of first integrals for a system of weakly nonlinear, coupled harmonic oscillators
    Waluya, SB
    Van Horssen, WT
    NONLINEAR DYNAMICS, 2002, 30 (03) : 243 - 266
  • [6] On Approximations of First Integrals for a System of Weakly Nonlinear, Coupled Harmonic Oscillators
    S. B. Waluya
    W. T. van Horssen
    Nonlinear Dynamics, 2002, 30 : 243 - 266
  • [7] Asymptotic approximations of first integrals for a nonlinear oscillator
    Waluya, SB
    van Horssen, WT
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 51 (08) : 1327 - 1346
  • [8] Analytical approximations to resonance response of harmonically forced strongly odd nonlinear oscillators
    Wu, Baisheng
    Zhou, Yang
    Lim, C. W.
    Sun, Weipeng
    ARCHIVE OF APPLIED MECHANICS, 2018, 88 (12) : 2123 - 2134
  • [9] First Integrals for Two Linearly Coupled Nonlinear Duffing Oscillators
    Naz, R.
    Naeem, I.
    Mahomed, F. M.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2011, 2011
  • [10] Approximate partial Noether operators and first integrals for coupled nonlinear oscillators
    I. Naeem
    F. M. Mahomed
    Nonlinear Dynamics, 2009, 57 : 303 - 311