Heat Kernel Estimates for Non-symmetric Finite Range Jump Processes

被引:0
|
作者
Jie Ming Wang
机构
[1] Beijing Institute of Technology,Department of Mathematics and Statistics
关键词
Heat kernel; transition density function; gradient estimate; finite range jump process; truncated fractional Laplacian; martingale problem; 60J35; 47G20; 60J75; 47D07;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first establish the sharp two-sided heat kernel estimates and the gradient estimate for the truncated fractional Laplacian under gradient perturbation Sb=Δ¯α/2+b⋅∇\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\cal S}^b}: = {\overline {\rm{\Delta }} ^{\alpha /2}} + b \cdot \nabla $$\end{document} where Δ¯α/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline {\rm{\Delta }} ^{\alpha /2}}$$\end{document} is the truncated fractional Laplacian, α ∈ (1, 2) and b ∈ Kdα−1. In the second part, for a more general finite range jump process, we present some sufficient conditions to allow that the two sided estimates of the heat kernel are comparable to the Poisson type function for large distance ∣x − y∣ in short time.
引用
收藏
页码:229 / 248
页数:19
相关论文
共 50 条