General theory of thin plates on the basis of nonsymmetric theory of elasticity

被引:0
作者
S. O. Sargsyan
机构
[1] Nalbandian Gyumri State Pedagogical Institute,
来源
Mechanics of Solids | 2012年 / 47卷
关键词
nonsymmetric elasticity; plates; shells; theory; free rotation; constrained rotation;
D O I
暂无
中图分类号
学科分类号
摘要
The paper uses the asymptotically justified hypothesis method to construct three different general refined theories of micropolar thin elastic plates, depending on the values of physical dimensionless material parameters, involving: (i) independent displacement and rotation fields, (ii) constrained rotation, and (iii) low shear stiffness. All angular shear deformations are taken into account.
引用
收藏
页码:119 / 136
页数:17
相关论文
共 27 条
  • [1] Goldstein R. V.(2007)Mechanics of Deformation and Fracture of Nanomaterials and Nanotechnology Fiz. Mezomekh. 10 17-30
  • [2] Morozov N. F.(2007)Derivation of Macroscopic Relations of the Elasticity of Complex Crystal Lattices Taking into Account the Moment Interactions at the Microlevel Prikl. Mat. Mekh. 71 595-615
  • [3] Ivanova E. A.(2001)Comparison of Wave Propagation Characteristics of the Cosserat Continuum Model and Corresponding Discrete Lattice Models Int. J. Solids Struct. 38 1563-1583
  • [4] Krivtsov A. M.(2008)Generalized Continuum Models in Nanomechanics Dokl. Ross. Akad. Nauk 420 328-330
  • [5] Morozov N. F.(2007)Analytical and Numerical Solutions for Static and Dynamic Problems of the Asymmetric Theory of Elasticity Fiz. Mezomekh. 10 77-90
  • [6] Suiker A. S. J.(1981)A Quest for Micropolar Elastic Constants. Part II Arch. Mech. 33 717-737
  • [7] Metrikine A. V.(1968)The Linear Elastic Cosserat Surface and Shell Theory Int. J. Solids Struct. 4 585-592
  • [8] De Borst R.(1982)Über eine Cosseratsche Theorie für Elastische Platen Thechn. Mech. 3 3-9
  • [9] Lisina S. A.(2004)The Solution of Saint-Venant’s Problem in the Theory of Cosserat Shells J. Elasticity 74 185-214
  • [10] Potapov A. I.(2009)Applied One-Dimensional Theories of Beams Based on Nonsymmetric Theory of Elasticity Fiz. Mezomekh. 11 41-54