Carbonate-associated sulfate as a proxy for lake level fluctuations: a proof of concept for Walker Lake, Nevada

被引:0
|
作者
William Berelson
Frank Corsetti
Brad Johnson
Toan Vo
Chris Der
机构
[1] University of Southern California,Department of Earth Sciences
来源
Journal of Paleolimnology | 2009年 / 42卷
关键词
Carbonate; Sulfate; Paleoproxy; Walker Lake; Tufa;
D O I
暂无
中图分类号
学科分类号
摘要
Closed-basin alkaline lakes record climate change particularly well because they generally contain a sedimentary record that is high in carbonate mineral content from which climate proxies can be determined. Various approaches are used to estimate paleo-lake level and volume (δ18O, dating of “shoreline” tufas, biotic proxies, etc.), yet all carry certain caveats that limit their usefulness. Ultimately, the relationship between the chemistry of the lake, the volume of the lake, and the response of the proxy will determine how well a proxy serves a paleolimnologic purpose. Here, we discuss the use of carbonate-associated sulfate (CAS), the sulfate contained within the lattice of carbonate minerals that precipitate in lake water, as a proxy for lake water chemistry and by extension, lake volume. Walker Lake, an alkaline closed-basin lake in western Nevada, has experienced a well-documented lake-level decline since 1880 and provides a test case for CAS as a lake-level proxy. By extracting the CAS from sedimentary carbonate and tufas that have been age dated, we can relate these values to lake sulfate content based on historical or other proxy data. We confirm that CAS tracks lake sulfate. Our study of sedimentary carbonates demonstrates that CAS is a linear function of lake sulfate through a range of 10–25 mM, which corresponds to a change in lake level of 30 m. As confirmation of the CAS technique, we analyzed a stromatolitic tufa dated using AMS 14C. The CAS trend in the stromatolite suggested that it grew during a lake-level decline, a result consistent with other proxy data. Finally, laboratory experiments were conducted that demonstrate CAS is monotonically correlated with sulfate concentration and that precipitation kinetics are not likely a major control on CAS in alkaline lakes, but that ionic strength of the solution exerts a strong control on CAS.
引用
收藏
相关论文
共 7 条
  • [1] Carbonate-associated sulfate as a proxy for lake level fluctuations: a proof of concept for Walker Lake, Nevada
    Berelson, William
    Corsetti, Frank
    Johnson, Brad
    Vo, Toan
    Der, Chris
    JOURNAL OF PALEOLIMNOLOGY, 2009, 42 (01) : 25 - 36
  • [2] Late Holocene lake-level fluctuations in Walker Lake, Nevada, USA
    Yuan, Fasong
    Linsley, Braddock K.
    Howe, Stephen S.
    Lund, Steve P.
    McGeehin, John P.
    PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY, 2006, 240 (3-4) : 497 - 507
  • [3] Late holocene sedimentary environments and lake-level fluctuations at Walker Lake, Nevada, USA
    Adams, Kenneth D.
    GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 2007, 119 (1-2) : 126 - 139
  • [4] Evaluating sedimentary geochemical lake-level tracers in Walker Lake, Nevada, over the last 200 years
    Yuan, Fasong
    Linsley, Braddock K.
    Howe, Stephen S.
    JOURNAL OF PALEOLIMNOLOGY, 2006, 36 (01) : 37 - 54
  • [5] Evaluating sedimentary geochemical lake-level tracers in Walker Lake, Nevada, over the last 200 years
    Fasong Yuan
    Braddock K. Linsley
    Stephen S. Howe
    Journal of Paleolimnology, 2006, 36 : 37 - 54
  • [6] Stromatolites in Walker Lake (Nevada, Great Basin, USA) record climate and lake level changes ∼35,000 years ago
    Petryshyn, Victoria A.
    Rivera, Marisol Juarez
    Agic, Heda
    Frantz, Carie M.
    Corsetti, Frank A.
    Tripati, Aradhna E.
    PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY, 2016, 451 : 140 - 151
  • [7] Late Pleistocene to present lake-level fluctuations at Pyramid and Winnemucca lakes, Nevada, USA
    Adams, Kenneth D.
    Rhodes, Edward J.
    QUATERNARY RESEARCH, 2019, 92 (01) : 146 - 164