Grain boundary defect compensation in Ti-doped BaFe0.5Nb0.5O3 ceramics

被引:0
作者
Xiaojun Sun
Jianming Deng
Saisai Liu
Tianxiang Yan
Biaolin Peng
Wenhao Jia
Zaoming Mei
Hongbo Su
Liang Fang
Laijun Liu
机构
[1] Guilin University of Technology,Key Laboratory of Nonferrous Materials and New Processing Technology, Ministry of Education, College of Materials Science and Engineering, Guangxi Universities Key Laboratory of Non
[2] Guangxi University,ferrous Metal Oxide Electronic Functional Materials and Devices
[3] Shanghai Getong Enterprise Co.,School of Physical Science and Technology and Guangxi Key Laboratory for Relativistic Astrophysics
[4] Ltd.,undefined
[5] Henan LiHeng Building Materials Co.,undefined
[6] Ltd.,undefined
[7] Henan Province Product Quality Supervision and Inspection Center,undefined
来源
Applied Physics A | 2016年 / 122卷
关键词
Oxygen Vacancy; Dielectric Relaxation; Dielectric Loss Factor; Ionize Oxygen Vacancy; Conductivity Activation Energy;
D O I
暂无
中图分类号
学科分类号
摘要
Giant dielectric ceramics Ba(Nb0.5Fe0.5-xTix)O3 (BNFT) have been fabricated by a conventional solid-state reaction. According to X-ray diffraction analysis, the crystal structure of these ceramics can be described by the cubic centrosymmetric with Pm-3m space group. The real part (ε’) of dielectric permittivity and dielectric loss (tanδ) of the BNFT ceramics was measured in a frequency range from 40 Hz to 100 MHz at room temperature. The (ε’) of all these samples displays a high value (~6500) and a small frequency-dependence from 1 kHz to 1 MHz. We have established a link between conductivity activation energy and defect compensation at grain boundaries. The Ti4+-doped Ba(Nb0.5Fe0.5)O3 as a donor makes a great influence on the grain boundary behavior, which restricts the migration of oxygen vacancy and depresses dielectric loss factor for Ba(Nb0.5Fe0.5)O3 ceramics.
引用
收藏
相关论文
共 87 条
  • [1] Homes CC(2001)Dielectric relaxation in solids (London: Chelsea) Science 293 673-undefined
  • [2] Vogt T(2004)undefined Nat. Mater. 3 774-undefined
  • [3] Shapiro SM(2002)undefined J. Phys.: Condens. Matter 14 249-undefined
  • [4] Wakimoto S(2007)undefined Appl. Phys. Lett. 90 022904-undefined
  • [5] Ramirez AP(2007)undefined Appl. Phys. Lett. 91 052903-undefined
  • [6] Chung SY(2002)undefined Phys. Rev. B 65 134103-undefined
  • [7] Kim ID(2014)undefined J. Alloys Compd. 591 224-undefined
  • [8] Kang SJ(2003)undefined J. Appl. Phys. 93 4130-undefined
  • [9] Saha S(2014)undefined Appl. Phys. A 114 891-undefined
  • [10] Sinha TP(2012)undefined Solid State Commun. 152 360-undefined