Some inequalities involving the extended gamma function and the Kummer confluent hypergeometric k-function

被引:0
作者
Kottakkaran Sooppy Nisar
Feng Qi
Gauhar Rahman
Shahid Mubeen
Muhammad Arshad
机构
[1] Prince Sattam Bin Abdulaziz University,Department of Mathematics, College of Arts and Science at Wadi Aldawaser
[2] Henan Polytechnic University,Institute of Mathematics
[3] Tianjin Polytechnic University,Department of Mathematics, College of Science
[4] University of Electronic Science and Technology of China,Institute of Fundamental and Frontier Sciences
[5] International Islamic University,Department of Mathematics
[6] University of Sargodha,Department of Mathematics
来源
Journal of Inequalities and Applications | / 2018卷
关键词
Extended gamma function; Inequality; Logarithmic convexity; Confluent hypergeometric ; -function; 33B15; 33C15; 33B20; 33C05; 41A60;
D O I
暂无
中图分类号
学科分类号
摘要
In the paper, the authors present some inequalities involving the extended gamma function and the Kummer confluent hypergeometric k-function via some classical inequalities such as Chebychev’s inequality for synchronous (or asynchronous, respectively) mappings, give a new proof of the log-convexity of the extended gamma function by using the Hölder inequality, and introduce a Turán type mean inequality for the Kummer confluent k-hypergeometric function.
引用
收藏
相关论文
共 58 条
  • [1] Barnard R.W.(2009)A note on Turán type and mean inequalities for the Kummer function J. Math. Anal. Appl. 349 259-263
  • [2] Gordy M.B.(1997)Extension of Euler’s beta function J. Comput. Appl. Math. 78 19-32
  • [3] Richards K.C.(1995)On the decomposition of generalized incomplete gamma functions with applications of Fourier transforms J. Comput. Appl. Math. 59 253-284
  • [4] Chaudhry M.A.(2007)On hypergeometric functions and Pochhammer Divulg. Mat. 15 179-192
  • [5] Qadir A.(2000)-symbol J. Inequal. Appl. 5 103-165
  • [6] Rafique M.(1998)Inequalities for beta and gamma functions via some classical and new integral inequalities Appl. Math. Lett. 11 105-109
  • [7] Zubair S.M.(2012)Applications of Ostrowski’s inequality to the estimation of error bounds for some special means and for some numerical quadrature rules Integral Transforms Spec. Funct. 23 701-708
  • [8] Chaudhry M.A.(2009)Monotonicity of functions connected with the gamma function and the volume of the unit ball J. Math. Inequal. 3 227-236
  • [9] Zubair S.M.(2010)A note on a gamma function inequality Int. J. Contemp. Math. Sci. 5 653-660
  • [10] Díaz R.(2001)Properties and inequalities of generalized Nonlinear Anal. Forum 6 143-150