Leveraging semantic resources in diversified query expansion

被引:0
作者
Adit Krishnan
Deepak P.
Sayan Ranu
Sameep Mehta
机构
[1] University of Illinois at Urbana-Champaign,Siebel Center for Computer Science
[2] Queen’s University Belfast,Department of Computer Science and Engineering
[3] IIT Delhi,undefined
[4] IBM-Research,undefined
来源
World Wide Web | 2018年 / 21卷
关键词
Query expansion; Diversification; Semantic search; Wikipedia; Entity ranking;
D O I
暂无
中图分类号
学科分类号
摘要
A search query, being a very concise grounding of user intent, could potentially have many possible interpretations. Search engines hedge their bets by diversifying top results to cover multiple such possibilities so that the user is likely to be satisfied, whatever be her intended interpretation. Diversified Query Expansion is the problem of diversifying query expansion suggestions, so that the user can specialize the query to better suit her intent, even before perusing search results. In this paper, we consider the usage of semantic resources and tools to arrive at improved methods for diversified query expansion. In particular, we develop two methods, those that leverage Wikipedia and pre-learnt distributional word embeddings respectively. Both the approaches operate on a common three-phase framework; that of first taking a set of informative terms from the search results of the initial query, then building a graph, following by using a diversity-conscious node ranking to prioritize candidate terms for diversified query expansion. Our methods differ in the second phase, with the first method Select-Link-Rank (SLR) linking terms with Wikipedia entities to accomplish graph construction; on the other hand, our second method, Select-Embed-Rank (SER), constructs the graph using similarities between distributional word embeddings. Through an empirical analysis and user study, we show that SLR ourperforms state-of-the-art diversified query expansion methods, thus establishing that Wikipedia is an effective resource to aid diversified query expansion. Our empirical analysis also illustrates that SER outperforms the baselines convincingly, asserting that it is the best available method for those cases where SLR is not applicable; these include narrow-focus search systems where a relevant knowledge base is unavailable. Our SLR method is also seen to outperform a state-of-the-art method in the task of diversified entity ranking.
引用
收藏
页码:1041 / 1067
页数:26
相关论文
共 15 条
[1]  
Blei DM(2003)Latent dirichlet allocation J. Mach. Learn. Res. 3 993-1022
[2]  
Ng AY(2007)Combining fields for query expansion and adaptive query expansion Inform Process Manag 43 1294-1307
[3]  
Jordan MI(1992)Vertex-reinforced random walk Probab. Theory Relat. Fields 92 117-136
[4]  
He B(2014)Detecting localized homogeneous anomalies over spatio-temporal data Data Min. Knowl. Discov. 28 1480-1502
[5]  
Ounis I(2009)Using the internet: Skill related problems in users’ online behavior Interact. Comput. 21 393-402
[6]  
Pemantle R(2011)Improving document clustering using okapi bm25 feature weighting Inf. Retr. 14 466-487
[7]  
Telang A(undefined)undefined undefined undefined undefined-undefined
[8]  
Deepak P(undefined)undefined undefined undefined undefined-undefined
[9]  
Joshi S(undefined)undefined undefined undefined undefined-undefined
[10]  
Deshpande P(undefined)undefined undefined undefined undefined-undefined