Strict Neighbor-Distinguishing Index of Subcubic Graphs

被引:0
作者
Jing Gu
Weifan Wang
Yiqiao Wang
Ying Wang
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] Beijing University of Chinese Medicine,School of Management
[3] Hebei Normal University of Science and Technology,School of Mathematics and Information Technology
来源
Graphs and Combinatorics | 2021年 / 37卷
关键词
Strict neighbor-distinguishing edge coloring; Strict neighbor-distinguishing index; Subcubic graph;
D O I
暂无
中图分类号
学科分类号
摘要
A proper edge coloring of a graph G is strict neighbor-distinguishing if for any two adjacent vertices u and v, the set of colors used on the edges incident to u and the set of colors used on the edges incident to v are not included with each other. The strict neighbor-distinguishing index of G is the minimum number χsnd′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\mathrm{snd}(G)$$\end{document} of colors in a strict neighbor-distinguishing edge coloring of G. In this paper, we prove that every connected subcubic graph G with δ(G)≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta (G)\ge 2$$\end{document} has χsnd′(G)≤7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\mathrm{snd}(G)\le 7$$\end{document}, and moreover χsnd′(G)=7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\mathrm{snd}(G)=7$$\end{document} if and only if G is a graph obtained from the graph K2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{2,3}$$\end{document} by inserting a 2-vertex into one edge.
引用
收藏
页码:355 / 368
页数:13
相关论文
共 37 条
[11]  
Wang W(2017)Bounds of Smarandachely adjacent vertex edge coloring of graphs Math. Pract. Theory 47 151-155
[12]  
Huo J(2008)The Smarandachely adjacent vertex edge coloring of graphs Sci. Rep. Lanzhou Jiaotong Univ. 3 1-13
[13]  
Wang Y(2002)Adjacent strong edge coloring of graphs Appl. Math. Lett. 15 623-626
[14]  
Liu X(2014)An improved upper bound on the adjacent vertex distinguishing chromatic index of a graph Discrete Appl. Math. 162 348-354
[15]  
Liu J(2009)On the Smarandachely adjacent vertex edge coloring of some double graphs J. Shandong Univ. Nat. Sci. 44 25-29
[16]  
Liu X(undefined)undefined undefined undefined undefined-undefined
[17]  
Liu J(undefined)undefined undefined undefined undefined-undefined
[18]  
Wang Z(undefined)undefined undefined undefined undefined-undefined
[19]  
Vučković B(undefined)undefined undefined undefined undefined-undefined
[20]  
Wang W(undefined)undefined undefined undefined undefined-undefined