Strict Neighbor-Distinguishing Index of Subcubic Graphs

被引:0
作者
Jing Gu
Weifan Wang
Yiqiao Wang
Ying Wang
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] Beijing University of Chinese Medicine,School of Management
[3] Hebei Normal University of Science and Technology,School of Mathematics and Information Technology
来源
Graphs and Combinatorics | 2021年 / 37卷
关键词
Strict neighbor-distinguishing edge coloring; Strict neighbor-distinguishing index; Subcubic graph;
D O I
暂无
中图分类号
学科分类号
摘要
A proper edge coloring of a graph G is strict neighbor-distinguishing if for any two adjacent vertices u and v, the set of colors used on the edges incident to u and the set of colors used on the edges incident to v are not included with each other. The strict neighbor-distinguishing index of G is the minimum number χsnd′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\mathrm{snd}(G)$$\end{document} of colors in a strict neighbor-distinguishing edge coloring of G. In this paper, we prove that every connected subcubic graph G with δ(G)≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta (G)\ge 2$$\end{document} has χsnd′(G)≤7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\mathrm{snd}(G)\le 7$$\end{document}, and moreover χsnd′(G)=7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\mathrm{snd}(G)=7$$\end{document} if and only if G is a graph obtained from the graph K2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{2,3}$$\end{document} by inserting a 2-vertex into one edge.
引用
收藏
页码:355 / 368
页数:13
相关论文
共 37 条
[1]  
Akbari S(2006)-Strong edge colorings of graphs Discrete Math. 306 3005-3010
[2]  
Bidkhori H(2007)Adjacent vertex distinguishing edge-colorings SIAM J. Discrete Math. 21 237-250
[3]  
Nosrati N(2005) is a bound on the adjacent vertex distinguishing edge chromatic number J. Combin. Theory Ser. B 95 246-256
[4]  
Balister PN(2014)On neighbor-distinguishing index of planar graphs J. Gr. Theory 76 262-278
[5]  
Győri E(2018)Adjacent vertex distinguishing index of graphs with maximum degree six Acta Math. Appl. Sin. 41 788-800
[6]  
Lehel J(2013)An upper bound of the Smarandachely-adjacent-vertex acyclic edge coloring of graphs J. Syst. Sci. Math. Sci. 33 550-554
[7]  
Schelp RH(2012)Smarandachely-adjacent-vertex star edge coloring of graphs J. Lanzhou Univ. Nat. Sci. 48 94-97
[8]  
Hatami H(2017)Edge-partitions of graphs and their neighbor-distinguishing index Discrete Math. 340 3092-3096
[9]  
Horňák M(2015)A characterization on the adjacent vertex distinguishing index of planar graphs with large maximum degree SIAM J. Discrete Math. 29 2412-2431
[10]  
Huang D(2015)Some bounds on the neighbor-distinguishing index of graphs Discrete Math. 338 2006-2013