Triacontanol modulates salt stress tolerance in cucumber by altering the physiological and biochemical status of plant cells

被引:0
|
作者
Mubeen Sarwar
Sumreen Anjum
Qurban Ali
Muhammad Waqar Alam
Muhammad Saleem Haider
Wajid Mehboob
机构
[1] University of the Punjab,Department of Horticulture
[2] University of Agriculture,Department of Horticulture
[3] Faisalabad,Institute of Botany
[4] Sub-Campus Depalpur,Institute of Molecular Biology and Biotechnology
[5] University of the Punjab,Department of Plant Pathology
[6] The University of Lahore,Department of Plant Pathology
[7] University of Okara,Plant Physiology Division
[8] University of the Punjab,undefined
[9] Nuclear Institute of Agriculture Tando Jam,undefined
来源
Scientific Reports | / 11卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Cucumber is an important vegetable but highly sensitive to salt stress. The present study was designed to investigate the comparative performance of cucumber genotypes under salt stress (50 mmol L−1) and stress alleviation through an optimized level of triacontanol @ 0.8 mg L−1. Four cucumber genotypes were subjected to foliar application of triacontanol under stress. Different physiological, biochemical, water relations and ionic traits were observed to determine the role of triacontanol in salt stress alleviation. Triacontanol ameliorated the lethal impact of salt stress in all genotypes, but Green long and Marketmore were more responsive than Summer green and 20252 in almost all the attributes that define the genetic potential of genotypes. Triacontanol performs as a good scavenger of ROS by accelerating the activity of antioxidant enzymes (SOD, POD, CAT) and compatible solutes (proline, glycinebetaine, phenolic contents), which lead to improved gas exchange attributes and water relations and in that way enhance the calcium and potassium contents or decline the sodium and chloride contents in cucumber leaves. Furthermore, triacontanol feeding also shows the answer to yield traits of cucumber. It was concluded from the results that the salinity tolerance efficacy of triacontanol is valid in enhancing the productivity of cucumber plants under salt stress. Triacontanol was more pronounced in green long and marketer green than in summer green and 20252. Hence, the findings of this study pave the way towards the usage of triacontanol @ 0.8 mg L−1, and green long and marketer genotypes may be recommended for saline soil.
引用
收藏
相关论文
共 50 条
  • [11] The Physiological, Biochemical and Molecular Roles of Brassinosteroids and Salicylic Acid in Plant Processes and Salt Tolerance
    Ashraf, M.
    Akram, N. A.
    Arteca, R. N.
    Foolad, M. R.
    CRITICAL REVIEWS IN PLANT SCIENCES, 2010, 29 (03) : 162 - 190
  • [12] Morphological, physiological and biochemical responses of biofuel plant Euphorbia lathyris to salt stress
    Yang, Jie
    Cao, Yan
    Yang, Ziyi
    Zhang, Weiming
    Sun, Lijun
    Lu, Changmei
    ACTA AGRICULTURAE SCANDINAVICA SECTION B-SOIL AND PLANT SCIENCE, 2013, 63 (04): : 330 - 340
  • [13] Plant drought stress tolerance: understanding its physiological, biochemical and molecular mechanisms
    Bashir, Sheikh Shanawaz
    Hussain, Anjuman
    Hussain, Sofi Javed
    Wani, Owais Ali
    Nabi, Sheikh Zahid
    Dar, Niyaz A.
    Baloch, Faheem Shehzad
    Mansoor, Sheikh
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2021, 35 (01) : 1912 - 1925
  • [14] Biochemical and Molecular Effects Induced by Triacontanol in Acquired Tolerance of Rice to Drought Stress
    Alharbi, Basmah M.
    Abdulmajeed, Awatif Mahfouz
    Hassan, Heba
    GENES, 2021, 12 (08)
  • [15] Screening parameters for salt stress tolerance of lettuce cultivars, based on physiological and biochemical responses
    Bartha, Csaba
    Martinez Ballesta, Maria Del Carmen
    Fodorpataki, Laszlo
    Popescu, Octavian
    Carvajal, Micaela
    CURRENT OPINION IN BIOTECHNOLOGY, 2011, 22 : S136 - S137
  • [16] Arbuscular Mycorrhizal Fungi Enhance Tolerance to Drought Stress by Altering the Physiological and Biochemical Characteristics of Sugar Beet
    Cui, Zeyuan
    Chen, Rui
    Li, Tai
    Zou, Bingchen
    Geng, Gui
    Xu, Yao
    Stevanato, Piergiorgio
    Yu, Lihua
    Nurminsky, Vadim N.
    Liu, Jiahui
    Wang, Yuguang
    SUGAR TECH, 2024, 26 (05) : 1377 - 1392
  • [17] Physiological and molecular mechanisms of plant salt tolerance
    Zhang, Jin-Lin
    Shi, Huazhong
    PHOTOSYNTHESIS RESEARCH, 2013, 115 (01) : 1 - 22
  • [18] Physiological and molecular mechanisms of plant salt tolerance
    Jin-Lin Zhang
    Huazhong Shi
    Photosynthesis Research, 2013, 115 : 1 - 22
  • [19] Epichloe bromicola from wild barley improves salt-tolerance of cultivated barley by altering physiological responses to salt stress
    Wang, Zhengfeng
    Liu, Jing
    White, James F. F.
    Li, Chunjie
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [20] Plant hormones in salt stress tolerance
    Hojin Ryu
    Yong-Gu Cho
    Journal of Plant Biology, 2015, 58 : 147 - 155