Finite Groups with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ p $\end{document}-Nilpotent or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \Phi $\end{document}-Simple Maximal Subgroups

被引:0
作者
E. N. Bazhanova
V. A. Vedernikov
机构
[1] Moscow City Teachers’ Training University,
[2] Digital Education Institute,undefined
关键词
maximal subgroup; -group; -decomposable group; -closed group; -nilpotent group; -solvable group; -simple group; Schmidt group; Frattini subgroup; 512.542;
D O I
10.1134/S0037446622010025
中图分类号
学科分类号
摘要
Under study is the structure of a finite non-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ r $\end{document}-nilpotent group, with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ r\in\{2,3,5\} $\end{document}, in which any non-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ r $\end{document}-nilpotent maximal subgroup is a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \Phi $\end{document}-simple group.
引用
收藏
页码:19 / 33
页数:14
相关论文
共 50 条
[41]   On minimal non-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_rC$$\end{document}-groups [J].
Mounia Bouchelaghem ;
Nadir Trabelsi .
Ricerche di Matematica, 2013, 62 (1) :97-105
[42]   The power structure of locally nilpotent p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{p}$$\end{document}-groups [J].
Heng Lv ;
Guiyun Chen ;
Wei Zhou .
Archiv der Mathematik, 2017, 108 (2) :123-131
[43]   The Kegel–Wielandt \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \sigma $\end{document}-Problem: Reduction to Simple Groups [J].
S. F. Kamornikov ;
V. N. Tyutyanov .
Siberian Mathematical Journal, 2025, 66 (1) :31-39
[44]   Finite Groups with Generalized Subnormal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{F}$$\end{document}-Critical Subgroups [J].
S. Wang ;
A. M. Liu ;
V. G. Safonov ;
A. N. Skiba .
Mathematical Notes, 2024, 116 (5) :934-941
[45]   On the structure of Nσ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {N}_{\sigma }$$\end{document}-critical groups [J].
Chenchen Cao ;
Wenbin Guo ;
Chi Zhang .
Monatshefte für Mathematik, 2019, 189 (2) :239-242
[46]   On the Boolean algebra induced by a unital ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-group [J].
Soudabeh Karamdoust ;
Hassan Myrnouri ;
Mahmood Pourgholamhossein .
Algebra universalis, 2024, 85 (2)
[48]   Finite Solvable Groups in Which the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma$$\end{document}-Quasinormality of Subgroups is a Transitive Relation [J].
Zhigang Wang ;
Wenbin Guo ;
I. N. Safonova ;
A. N. Skiba .
Mathematical Notes, 2023, 114 (5-6) :1021-1028
[49]   Quasidiagonality of C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-Algebras of Solvable Lie Groups [J].
Ingrid Beltiţă ;
Daniel Beltiţă .
Integral Equations and Operator Theory, 2018, 90 (1)
[50]   Normal generation and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^2$$\end{document}-Betti numbers of groups [J].
Denis Osin ;
Andreas Thom .
Mathematische Annalen, 2013, 355 (4) :1331-1347