On the divisibility of sums of even powers of q-binomial coefficients

被引:0
作者
Ji-Cai Liu
Xue-Ting Jiang
机构
[1] Wenzhou University,Department of Mathematics
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2022年 / 116卷
关键词
-Binomial coefficients; -Congruences; Cyclotomic polynomials; 33D15; 11A07; 11B65;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the divisibility conjecture on sums of even powers of q-binomial coefficients, which was recently proposed by Guo, Schlosser and Zudilin. Our proof relies on two q-harmonic series congruences due to Shi and Pan.
引用
收藏
相关论文
共 19 条
[1]  
El Bachraoui M(2021)On supercongruences for truncated sums of squares of basic hypergeometric series Ramanujan J. 54 415-426
[2]  
Gorodetsky O(2019)-Congruences, with applications to supercongruences and the cyclic sieving phenomenon Int. J. Number Theory 15 1919-1968
[3]  
Gu C-Y(2020)-Analogues of two supercongruences of Z.-W. Sun Czech. Math. J. 70 757-765
[4]  
Guo VJW(2018)-Analogues of two Ramanujan-type formulas for J. Differ. Equ. Appl. 24 1368-1373
[5]  
Guo VJW(2012)New congruences for sums involving Apéry numbers or central Delannoy numbers Int. J. Number Theory 8 2003-2016
[6]  
Liu J-C(2019)A Adv. Math. 346 329-358
[7]  
Guo VJW(2020)-microscope for supercongruences C. R. Math. Acad. Sci. Paris 358 211-215
[8]  
Zeng J(2020)On a congruence involving Bull. Aust. Math. Soc. 102 353-359
[9]  
Guo VJW(2020)-Catalan numbers Adv. Appl. Math. 116 102003-1269
[10]  
Zudilin W(2008)A truncated identity of Euler and related Rocky Mt. J. Math. 38 1263-531