Galois E6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_6$$\end{document}-Bundles over a Hyperelliptic Algebraic Curve

被引:0
作者
Álvaro Antón-Sancho
机构
[1] Catholic University of Ávila,Department of Mathematics and Experimental Science, Fray Luis de León University College of Education
关键词
Principal bundle; Group ; Automorphism; Hyperelliptic curve; Fixed points; 14H10; 14H60; 57R57; 53C10;
D O I
10.1007/s41980-023-00785-5
中图分类号
学科分类号
摘要
Let X be a hyperelliptic algebraic curve and let M(E6)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(E_6)$$\end{document} be the moduli space of polystable principal E6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_6$$\end{document}-bundles over X. Suppose, in addition, that the outer involution σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} of E6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_6$$\end{document} acts as the hyperelliptic involution of X. Then, an automorphism of M(E6)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(E_6)$$\end{document} is defined which acts by E↦σ∗(E∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E\mapsto \sigma ^*(E^*)$$\end{document}, where E is a principal E6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_6$$\end{document}-bundle over X seen as a vector bundle through the fundamental irreducible 27-dimensional representation of E6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_6$$\end{document}. In this paper, Galois E6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_6$$\end{document}-bundles over X are defined and related to the fixed points of the above automorphism of M(E6)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(E_6)$$\end{document}. If PE6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{P}\,}}E_6$$\end{document} is the centerless group with Lie algebra e6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {e}}_6$$\end{document}, then Galois PE6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{P}\,}}E_6$$\end{document}-bundles over X are also defined and related to Galois E6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_6$$\end{document}-bundles. Finally, a specific expression for a certain family of Galois E6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_6$$\end{document}-bundles over X is given and some implications of the study in terms of representations of the fundamental group π1(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _1(X)$$\end{document} of the base curve are drawn.
引用
收藏
相关论文
共 38 条
  • [1] Antón-Sancho Á(2015)Principal Rev. Colombiana Mat. 49 235-259
  • [2] Antón-Sancho Á(2018)-bundles and triality Rev. Un. Mat. Argentina 59 33-56
  • [3] Antón-Sancho Á(2018)The group of automorphisms of the moduli space of principal bundles with structure group Math. Scand. 122 53-83
  • [4] Atiyah M(1982) and Philos. Trans. R. Soc. Lond. A 308 523-615
  • [5] Bott R(2018)Automorphisms of the moduli space of principal Proc. Math. Sci. 128 57-86
  • [6] Basu S(2012)-bundles induced by outer automorphisms of Int. J. Math. 23 1250052-51
  • [7] Pal S(2013)The Yang-Mills equations over Riemann surfaces Expos. Math. 31 73-277
  • [8] Biswas I(1988)Moduli space of parabolic vector bundles over hyperelliptic curves Phys. Lett. B 203 47-118
  • [9] Gómez TL(1983)Automorphisms of moduli spaces of symplectic bundles J. Differ. Geom. 18 269-732
  • [10] Muñoz V(1998)Automorphisms of moduli spaces of vector bundles over a curve Math. Res. Lett. 5 97-138