Boundedness of Hausdorff operators on Lebesgue spaces and Hardy spaces

被引:18
作者
Chen, Jiecheng [1 ]
Dai, Jiawei [1 ]
Fan, Dashan [2 ]
Zhu, Xiangrong [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[2] Univ Wisconsin, Dept Math, Milwaukee, WI 53201 USA
基金
中国国家自然科学基金;
关键词
Hausdorff operator; Hardy space; atomic characterization; molecule; H-P;
D O I
10.1007/s11425-017-9246-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the boundedness of the Hausdorff operator H (I center dot) on the real line a"e. First, we start with an easy case by establishing the boundedness of the Hausdorff operator on the Lebesgue space L (p) (a"e) and the Hardy space H (1)(a"e). The key idea is to reformulate H (I center dot) as a Caldern-Zygmund convolution operator, from which its boundedness is proved by verifying the Hormander condition of the convolution kernel. Secondly, to prove the boundedness on the Hardy space H (p) (a"e) with 0 < p < 1; we rewrite the Hausdorff operator as a singular integral operator with the non-convolution kernel. This novel reformulation, in combination with the Taibleson-Weiss molecular characterization of H (p) (a"e) spaces, enables us to obtain the desired results. Those results significantly extend the known boundedness of the Hausdorff operator on H (1)(a"e).
引用
收藏
页码:1647 / 1664
页数:18
相关论文
共 42 条
[1]  
Chen J, 2016, ACTA MATH HUNG, V150, P142, DOI 10.1007/s10474-016-0622-1
[2]   THE FRACTIONAL HAUSDORFF OPERATORS ON THE HARDY SPACES Hp(Rn) [J].
Chen, J. ;
Fan, D. ;
Lin, X. ;
Ruan, J. .
ANALYSIS MATHEMATICA, 2016, 42 (01) :1-17
[3]   Multilinear Hausdorff operators and their best constants [J].
Chen, Jie Cheng ;
Fan, Da Shan ;
Zhang, Chun Jie .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (08) :1521-1530
[4]   Hausdorff operators on Euclidean spaces [J].
Chen Jie-cheng ;
Fan Da-shan ;
Wang Si-lei .
APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2013, 28 (04) :548-564
[5]   Boundedness of multidimensional Hausdorff operators on H1(Rn) [J].
Chen Jiecheng ;
Zhu Xiangrong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (01) :428-434
[6]   Hausdorff operators on function spaces [J].
Chen, Jiecheng ;
Fan, Dashan ;
Li, Jun .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2012, 33 (04) :537-556
[7]   EXTENSIONS OF HARDY SPACES AND THEIR USE IN ANALYSIS [J].
COIFMAN, RR ;
WEISS, G .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (04) :569-645
[8]  
Fan D., 2014, Analysis, V34, P319, DOI DOI 10.1515/ANLY-2012-1183
[9]   Real-variable characterizations of anisotropic product Musielak-Orlicz Hardy spaces [J].
Fan XingYa ;
He JianXun ;
Li BaoDe ;
Yang DaChun .
SCIENCE CHINA-MATHEMATICS, 2017, 60 (11) :2093-2154
[10]  
FEFFERMAN C, 1972, ACTA MATH-UPPSALA, V129, P137, DOI 10.1007/BF02392215