Dynamical behaviour of fractional-order finance system

被引:0
作者
Muhammad Farman
Ali Akgül
Muhammad Umer Saleem
Sumaiyah Imtiaz
Aqeel Ahmad
机构
[1] University of Lahore,Department of Mathematics and Statistics
[2] Siirt University,Department of Mathematics, Art and Science Faculty
[3] University of Education,Division of Science and Technology, Department of Mathematics
来源
Pramana | 2020年 / 94卷
关键词
Finance system; fractional derivative; Picard–Lindelof; stability analysis; price index; 02.30.Hq; 02.60.Cb; 02.30.Gp;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we developed the fractional-order finance system transmission model. The main objective of this paper is to construct and evaluate a fractional derivative to track the shape of the dynamic chaotic financial system of fractional order. The numerical solution for fractional-order financial system is determined using the Atangana–Baleanu–Caputo (ABC) and Caputo derivatives. Picard–Lindelof’s method shows the existence and uniqueness of the solution. Numerical techniques show that ABC derivative strategy can be used effectively to overcome the risk of investment. An active control strategy for controlling chaos is used in this system. The stabilisation of equilibrium is obtained by both theoretical analysis and simulation results.
引用
收藏
相关论文
共 41 条
[1]  
Ma JH(2001)undefined Appl. Math. Mech. 22 1240-9
[2]  
Chen YS(2001)undefined Appl. Math. Mech. 22 1375-undefined
[3]  
Ma JH(2011)undefined Comput. Math. Appl. 62 4796-undefined
[4]  
Chen YS(2013)undefined J. Appl. Math. Comput. 43 295-undefined
[5]  
Xu Y(2002)undefined Stud. Nonlinear Dynam. Econometrics 5 281-undefined
[6]  
He Z(2005)undefined Proc. Natl Acad. Sci. USA 102 9424-undefined
[7]  
Xu YF(2005)undefined Stoch. Anal. Appl. 23 275-undefined
[8]  
He ZM(2010)undefined Physica A 389 2434-undefined
[9]  
Kirman A(2011)undefined Comput. Math. Appl. 62 1531-undefined
[10]  
Teyssiere G(2011)undefined J. King Saud Univ. Sci. 23 151-undefined