Variable-step deferred correction methods based on backward differentiation formulae for ordinary differential equations

被引:0
作者
Yves Bourgault
André Garon
机构
[1] University of Ottawa,Department of Mathematics and Statistics
[2] École Polytechnique,undefined
[3] Université de Montréal,undefined
来源
BIT Numerical Mathematics | 2022年 / 62卷
关键词
Ordinary differential equations; High-order time-stepping methods; Deferred correction; A-stability; Backward differentiation formulae; 5B05; 65L04; 65L05; 65L12; 65L20;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a sequence of variable time step deferred correction (DC) methods constructed recursively from the second-order backward differentiation formula (BDF2) applied to the numerical solution of initial value problems for first-order ordinary differential equations (ODE). The sequence of corrections starts with the BDF2 then considered as DC2. We prove that this improvement from a p-order solution (DCp) results in a p+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p+1$$\end{document}-order accurate solution (DCp+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p+1$$\end{document}). This one-order increment in accuracy holds for the least stringent BDF2 0-stability conditions. If we introduce additional requirements for the ratio of consecutive variable time step sizes, then the order increment is 2, allowing a direct transition from DCp to DCp+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p+2$$\end{document}. These requirements include the constant time step DCp methods. We also prove that all these DCp methods are A-stable. We briefly discuss two other DC variants to illustrate how a proper transition from DCp to DCp+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p+1$$\end{document} is critical to maintaining A-stability at all orders. Numerical experiments based on two manufactured (closed-form) solutions confirmed the accuracy orders of the DCp – for DCp, p=2,3,4,5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2,3,4,5$$\end{document} – both with constant or alternating time step sizes. We showed that the theoretical conditions required to obtain an increment of orders 1 and 2 are satisfied in practice. Finally, a test case shows that we can estimate the error on the DCp solution with the DCp+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p+1$$\end{document} solution, and a last test case that our new methods maintain their order of accuracy for a stiff system.
引用
收藏
页码:1789 / 1822
页数:33
相关论文
共 55 条
[1]  
Birken P(2010)A time-adaptive fluid-structure interaction method for thermal coupling Comput. vis. sci. 13 331-340
[2]  
Quint KJ(2020)A new k-TMI/ALE fluid-structure formulation to study the low mass ratio dynamics of an elliptical cylinder J. Comput. Phys. 422 109,734-266
[3]  
Hartmann S(2000)Spectral deferred correction methods for ordinary differential equations BIT 40 241-59
[4]  
Meister A(1947)Some improvements in the use of relaxation methods for the solution of ordinary and partial differential equations Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 190 31-1043
[5]  
Couture-Peck D(1974)The effect of variable mesh size on the stability of multistep methods SIAM J. Numerical Anal. 11 1025-2054
[6]  
Garon A(1985)The deferred correction procedure for linear multistep formulas J. Comput. Math. 3 41-A2681
[7]  
Delfour MC(2008)Adaptive time-stepping for incompressible flow part I: Scalar advection-diffusion SIAM J. Scientific Comput. 30 2018-995
[8]  
Dutt A(2015)High-order time stepping for the incompressible Navier-Stokes equations SIAM J. Scientific Comput. 37 A2656-176
[9]  
Greengard L(2001)Deferred correction methods for initial value problems BIT Numerical Mathematics 41 986-217
[10]  
Rokhlin V(2015)hp-adaptive time integration based on the BDF for viscous flows J. Comput. Phys. 291 151-524