Jagged2 controls the generation of motor neuron and oligodendrocyte progenitors in the ventral spinal cord

被引:0
|
作者
M A Rabadán
J Cayuso
G Le Dréau
C Cruz
M Barzi
S Pons
J Briscoe
E Martí
机构
[1] Instituto de Biología Molecular de Barcelona,
[2] CSIC,undefined
[3] Parc Científic de Barcelona,undefined
[4] National Institute for Medical Research,undefined
[5] The Ridgeway,undefined
[6] Mill Hill,undefined
[7] Instituto de Investigaciones Biomédicas de Barcelona,undefined
[8] CSIC-IDIBAPS,undefined
来源
Cell Death & Differentiation | 2012年 / 19卷
关键词
sonic hedgehog; Notch; Olig2; Hes5; spinal cord; neurogenesis;
D O I
暂无
中图分类号
学科分类号
摘要
In the developing spinal cord, motor neurons (MNs) and oligodendrocytes arise sequentially from a common pool of progenitors. However, the genetic network responsible for this neurogenesis to gliogenesis switch is largely unknown. A transcriptome analysis identified the Notch ligand Jagged2 (JAG2) as a Sonic hedgehog-regulated factor transiently expressed in MN progenitors (pMNs). In vivo loss- and gain-of-function experiments show that JAG2 schedules the differentiation of the pMN progenitors. At early developmental stages, Olig2 expressing pMN progenitors that enter the differentiation pathway exclusively generate MNs. At these times, the activation of the Notch pathway by JAG2 maintains selected pMN progenitors in an undifferentiated state by two mechanisms; first it inhibits MN generation by reducing Olig2 proteins levels, and second it directly inhibits the premature generation of oligodendrocyte progenitors (OLPs) by maintaining high levels of Hes5. Later, extinction of JAG2 from the pMN results in the loss of Hes5 expression, heralding the gliogenic phase of pMN progenitors. Strikingly, downregulation of JAG2 in pMN progenitors is sufficient to promote the precocious generation of OLPs. Together these data provide evidence that JAG2 is a key regulator of the timely and ordered generation of two of the defining cell types in the spinal cord, MNs and OLPs.
引用
收藏
页码:209 / 219
页数:10
相关论文
共 50 条
  • [31] Effects of limb exercise after spinal cord injury on motor neuron dendrite structure
    Gazula, VR
    Roberts, M
    Luzzio, C
    Jawad, AF
    Kalb, RG
    JOURNAL OF COMPARATIVE NEUROLOGY, 2004, 476 (02) : 130 - 145
  • [32] Tumor necrosis factor is increased in the spinal cord of an animal model of motor neuron degeneration
    Ghezzi, P
    Bernardini, R
    Giuffrida, R
    Bellomo, M
    Manzoni, C
    Comoletti, D
    Di Santo, E
    Benigni, F
    Mennini, T
    EUROPEAN CYTOKINE NETWORK, 1998, 9 (02) : 139 - 144
  • [33] A Monolayer System for the Efficient Generation of Motor Neuron Progenitors and Functional Motor Neurons from Human Pluripotent Stem Cells
    Cutarelli, Alessandro
    Martinez-Rojas, Vladimir A.
    Tata, Alice
    Battistella, Ingrid
    Rossi, Daniela
    Arosio, Daniele
    Musio, Carlo
    Conti, Luciano
    CELLS, 2021, 10 (05)
  • [34] MR-Pathologic comparison of the upper spinal cord in different motor neuron diseases
    Sperfeld, AD
    Bretschneider, V
    Flaith, L
    Unrath, A
    Hanemann, CO
    Ludolph, AC
    Kassubek, J
    EUROPEAN NEUROLOGY, 2005, 53 (02) : 74 - 77
  • [35] Directed differentiation of ventral spinal progenitors and motor neurons from human embryonic stem cells by small molecules
    Li, Xue-Jun
    Hu, Bao-Yang
    Jones, Stefanie A.
    Zhang, Ying-Sha
    Lavaute, Timothy
    Du, Zhong-Wei
    Zhang, Su-Chun
    STEM CELLS, 2008, 26 (04) : 886 - 893
  • [36] Effects of hypoxia on the ventral root motor-evoked potential in the in vitro spinal cord preparation
    Ataka, H
    Murakami, M
    Goto, S
    Moriya, H
    Hayashi, F
    Fukuda, Y
    SPINE, 1996, 21 (18) : 2095 - 2100
  • [37] Mirk/Dyrk1B controls ventral spinal cord development via Shh pathway
    Kokkorakis, N.
    Douka, K.
    Nalmpanti, A.
    Politis, P. K.
    Zagoraiou, L.
    Matsas, R.
    Gaitanou, M.
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2024, 81 (01)
  • [38] Cross-sectional and longitudinal assessment of the upper cervical spinal cord in motor neuron disease
    van der Burgh, Hannelore K.
    Westeneng, Henk-Jan
    Meier, Jil M.
    van Es, Michael A.
    Veldink, Jan H.
    Hendrikse, Jeroen
    van den Heuvel, Martijn P.
    van den Berga, Leonard H.
    NEUROIMAGE-CLINICAL, 2019, 24
  • [39] Involvement of spinal sensory pathway in ALS and specificity of cord atrophy to lower motor neuron degeneration
    Cohen-Adad, Julien
    El Mendili, Mohamed-Mounir
    Morizot-Koutlidis, Regine
    Lehericy, Stephane
    Meininger, Vincent
    Blancho, Sophie
    Rossignol, Serge
    Benali, Habib
    Pradat, Pierre-Francois
    AMYOTROPHIC LATERAL SCLEROSIS AND FRONTOTEMPORAL DEGENERATION, 2013, 14 (01) : 30 - 38
  • [40] FGF binding protein 3 is required for spinal cord motor neuron development and regeneration in zebrafish
    Xu, Guangmin
    Huang, Zigang
    Sheng, Jiajing
    Gao, Xiang
    Wang, Xin
    Garcia, Jason Q.
    Wei, Guanyun
    Liu, Dong
    Gong, Jie
    EXPERIMENTAL NEUROLOGY, 2022, 348