A Study of Nanoparticle Aerosol Charging by Monte Carlo Simulations

被引:0
作者
Arkadi Maisels
Frank Jordan
Frank Einar Kruis
Heinz Fissan
机构
[1] Gerhard-Mercator University Duisburg,Process and Aerosol Measurement Technology
来源
Journal of Nanoparticle Research | 2003年 / 5卷
关键词
nanoparticle; diffusion charging; photocharging; Monte Carlo simulation; bicomponent aerosol;
D O I
暂无
中图分类号
学科分类号
摘要
A Direct Simulation Monte Carlo (DSMC) technique is applied for describing the dynamics of aerosol charging. The method is based on the transformation of known combination coefficients into charging probabilities. Changes in the particle charge distribution are computed as a stochastic game, calculating the time-step after each event. The simulations are validated by comparison with analytical solutions for unipolar aerosol diffusion charging and aerosol photocharging. The advantage of the DSMC method lies in the uncomplicated simulation of multi-dimensional systems that would result in very elaborate population balances. The DSMC method is used for simulation of the photocharging of moderately concentrated bicomponent polydisperse aerosols. By means of this method, the influence of the particle parameters (size, material) on the dynamics of the charge distribution in different size and material fractions has been studied. It is shown that charge separation between size or material fractions can be achieved for aerosol components with dissimilar work functions, while the total aerosol charge is zero.
引用
收藏
页码:225 / 235
页数:10
相关论文
共 50 条
  • [31] On repeated parameter sampling in Monte Carlo simulations
    Annan, JD
    ECOLOGICAL MODELLING, 1997, 97 (1-2) : 111 - 115
  • [32] On the implementation of acollinearity in PET Monte Carlo simulations
    Toussaint, Maxime
    Loignon-Houle, Francis
    Auger, Etienne
    Lapointe, Gabriel
    Dussault, Jean-Pierre
    Lecomte, Roger
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (18)
  • [33] Monte Carlo approximate tensor moment simulations
    Arismendi, Juan Carlos
    Kimura, Herbert
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2016, 23 (05) : 825 - 847
  • [34] Monte Carlo simulations for real estate valuation
    Hoesli, Martin
    Jani, Elion
    Bender, Andre
    JOURNAL OF PROPERTY INVESTMENT & FINANCE, 2006, 24 (02) : 102 - +
  • [35] Monte Carlo Simulations of Wind Speed Data
    Gallagher, Ron
    Elmore, Andrew Curtis
    WIND ENGINEERING, 2009, 33 (06) : 661 - 673
  • [36] Hydrophobic interactions of xenon by Monte Carlo simulations
    Coskuner, Orkid
    Deiters, Ulrich K.
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2007, 221 (06): : 785 - 799
  • [37] SPATIAL CORRELATIONS IN MONTE CARLO CRITICALITY SIMULATIONS
    Dumonteil, E.
    Malvagi, F.
    Zoia, A.
    Mazzolo, A.
    Artusio, D.
    Dieudonne, C.
    De Mulatier, C.
    SNA + MC 2013 - JOINT INTERNATIONAL CONFERENCE ON SUPERCOMPUTING IN NUCLEAR APPLICATIONS + MONTE CARLO, 2014,
  • [38] Dynamic bounds coupled with Monte Carlo simulations
    Rajabalinejad, M.
    Meester, L. E.
    van Gelder, P. H. A. J. M.
    Vrijling, J. K.
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2011, 96 (02) : 278 - 285
  • [39] Biofilm model calibration and microbial diversity study using Monte Carlo simulations
    Brockmann, D.
    Caylet, A.
    Escudie, R.
    Steyer, J. -P.
    Bernet, N.
    BIOTECHNOLOGY AND BIOENGINEERING, 2013, 110 (05) : 1323 - 1332
  • [40] Monte Carlo Simulation on the Imaging Contrast Enhancement in Nanoparticle-enhanced Radiotherapy
    Albayedh, Ferdos
    Chow, James C. L.
    JOURNAL OF MEDICAL PHYSICS, 2018, 43 (03) : 195 - 199