From neuroscience to computer science: a topical approach on Twitter

被引:7
作者
Piña-García C.A. [1 ,2 ]
Siqueiros-García J.M. [2 ]
Robles-Belmont E. [2 ]
Carreón G. [2 ]
Gershenson C. [2 ,4 ,5 ,6 ]
López J.A.D. [3 ]
机构
[1] Centro de Estudios de Opinión y Análisis, Laboratorio para el Análisis de Información Generada a través de las Redes Sociales en Internet (LARSI), Universidad Veracruzana, Veracruz, Xalapa
[2] Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas Departamento de Ciencias de la Computación, Universidad Nacional Autónoma de México, Ciudad de México
[3] Imperial College London, London
[4] Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México
[5] SENSEable City Lab, Massachusetts Institute of Technology, Cambridge, MA
[6] ITMO University, Birzhevaya liniya 4, St. Petersburg
来源
Journal of Computational Social Science | 2018年 / 1卷 / 1期
基金
美国国家卫生研究院;
关键词
Complex systems; Computational social science; Social media; Social networking; Twitter;
D O I
10.1007/s42001-017-0002-9
中图分类号
学科分类号
摘要
Twitter is perhaps the most influential microblogging service, with 271 million regular users producing approximately 500 million tweets per day. Previous studies of tweets discussing scientific topics are limited to local surveys or may not be representative geographically. This indicates a need to harvest and analyse tweets with the aim of understanding the level of dissemination of science related topics worldwide. In this study, we use Twitter as case of study and explore the hypothesis of science popularization via the social stream. We present and discuss tweets related to popular science around the world using eleven keywords. We analyze a sample of 306,163 tweets posted by 91,557 users with the aim of identifying tweets and those categories formed around temporally similar topics. We systematically examined the data to track and analyze the online activity around users tweeting about popular science. In addition, we identify locations of high Twitter activity that occur in several places around the world. We also examine which sources (mobile devices, apps, and other social networks) are used to share popular science related links. Furthermore, this study provides insights into the geographic density of popular science tweets worldwide. We show that emergent topics related to popular science are important because they could help to explore how science becomes of public interest. The study also offers some important insights for studying the type of scientific content that users are more likely to tweet. © 2017, Springer Nature Singapore Pte Ltd.
引用
收藏
页码:187 / 208
页数:21
相关论文
共 50 条
  • [31] Online politicizations of science: Contestation versus denialism at the convergence between COVID-19 and climate science on Twitter
    Alinejad, Donya
    Honari, Ali
    PUBLIC UNDERSTANDING OF SCIENCE, 2024, 33 (04) : 396 - 413
  • [32] Twitter Geolocation: A Hybrid Approach
    Bakerman, Jordan
    Pazdernik, Karl
    Wilson, Alyson
    Fairchild, Geoffrey
    Bahran, Rian
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2018, 12 (03)
  • [33] Recognizing Depression from Twitter Activity
    Tsugawa, Sho
    Kikuchi, Yusuke
    Kishino, Fumio
    Nakajima, Kosuke
    Itoh, Yuichi
    Ohsaki, Hiroyuki
    CHI 2015: PROCEEDINGS OF THE 33RD ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, 2015, : 3187 - 3196
  • [34] Identifying behaviors that generate positive interactions between science museums and people on Twitter
    Baker, Stacy
    MUSEUM MANAGEMENT AND CURATORSHIP, 2017, 32 (02) : 144 - 159
  • [35] Citizen Science and Open Learning: A Twitter perspective
    Roldan-Alvarez, David
    Martinez-Martinez, Fernando
    Martin, Estefania
    IEEE 21ST INTERNATIONAL CONFERENCE ON ADVANCED LEARNING TECHNOLOGIES (ICALT 2021), 2021, : 6 - 8
  • [37] Unsupervised Topic Extraction from Twitter: A Feature-pivot Approach
    GabAllah, Nada A.
    Rafea, Ahmed
    WEBIST: PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON WEB INFORMATION SYSTEMS AND TECHNOLOGIES, 2019, : 185 - 192
  • [38] User-Level Twitter Sentiment Analysis with a Hybrid Approach
    Er, Meng Joo
    Liu, Fan
    Wang, Ning
    Zhang, Yong
    Pratama, Mahardhika
    ADVANCES IN NEURAL NETWORKS - ISNN 2016, 2016, 9719 : 426 - 433
  • [39] Geovisual Analytics Approach to Exploring Public Political Discourse on Twitter
    Nelson, Jonathan K.
    Quinn, Sterling
    Swedberg, Brian
    Chu, Wanghuan
    MacEachren, Alan M.
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2015, 4 (01) : 337 - 366
  • [40] Sampling Twitter users for social science research: evidence from a systematic review of the literature
    Vicente P.
    Quality & Quantity, 2023, 57 (6) : 5449 - 5489