From neuroscience to computer science: a topical approach on Twitter

被引:7
|
作者
Piña-García C.A. [1 ,2 ]
Siqueiros-García J.M. [2 ]
Robles-Belmont E. [2 ]
Carreón G. [2 ]
Gershenson C. [2 ,4 ,5 ,6 ]
López J.A.D. [3 ]
机构
[1] Centro de Estudios de Opinión y Análisis, Laboratorio para el Análisis de Información Generada a través de las Redes Sociales en Internet (LARSI), Universidad Veracruzana, Veracruz, Xalapa
[2] Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas Departamento de Ciencias de la Computación, Universidad Nacional Autónoma de México, Ciudad de México
[3] Imperial College London, London
[4] Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México
[5] SENSEable City Lab, Massachusetts Institute of Technology, Cambridge, MA
[6] ITMO University, Birzhevaya liniya 4, St. Petersburg
来源
Journal of Computational Social Science | 2018年 / 1卷 / 1期
基金
美国国家卫生研究院;
关键词
Complex systems; Computational social science; Social media; Social networking; Twitter;
D O I
10.1007/s42001-017-0002-9
中图分类号
学科分类号
摘要
Twitter is perhaps the most influential microblogging service, with 271 million regular users producing approximately 500 million tweets per day. Previous studies of tweets discussing scientific topics are limited to local surveys or may not be representative geographically. This indicates a need to harvest and analyse tweets with the aim of understanding the level of dissemination of science related topics worldwide. In this study, we use Twitter as case of study and explore the hypothesis of science popularization via the social stream. We present and discuss tweets related to popular science around the world using eleven keywords. We analyze a sample of 306,163 tweets posted by 91,557 users with the aim of identifying tweets and those categories formed around temporally similar topics. We systematically examined the data to track and analyze the online activity around users tweeting about popular science. In addition, we identify locations of high Twitter activity that occur in several places around the world. We also examine which sources (mobile devices, apps, and other social networks) are used to share popular science related links. Furthermore, this study provides insights into the geographic density of popular science tweets worldwide. We show that emergent topics related to popular science are important because they could help to explore how science becomes of public interest. The study also offers some important insights for studying the type of scientific content that users are more likely to tweet. © 2017, Springer Nature Singapore Pte Ltd.
引用
收藏
页码:187 / 208
页数:21
相关论文
共 50 条
  • [21] Topical Fluoride Applications Related Posts Analysis on Twitter Using Natural Language Processing
    Eliacika, Basak Kiziltan
    ORAL HEALTH & PREVENTIVE DENTISTRY, 2021, 19 (01) : 457 - 463
  • [22] Science in the Era of Facebook and Twitter: Get Used to It Reproduced, with minor editorial changes, from the author's blog
    Falcke, Heino
    CAPJOURNAL, 2018, (23): : 10 - 12
  • [23] "My ADHD Hellbrain": A Twitter Data Science Perspective on a Behavioural Disorder
    Thelwall, Mike
    Makita, Meiko
    Mas-Bleda, Amalia
    Stuart, Emma
    JOURNAL OF DATA AND INFORMATION SCIENCE, 2021, 6 (01) : 13 - 34
  • [24] A Hybrid Approach for Drug Abuse Events Extraction from Twitter
    Jenhani, Ferdaous
    Gouider, Mohamed Salah
    Ben Said, Lamjed
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS: PROCEEDINGS OF THE 20TH INTERNATIONAL CONFERENCE KES-2016, 2016, 96 : 1032 - 1040
  • [25] Male and female politicians on Twitter: A machine learning approach
    Beltran, Javier
    Gallego, Aina
    Huidobro, Alba
    Romero, Enrique
    Padro, Lluis
    EUROPEAN JOURNAL OF POLITICAL RESEARCH, 2021, 60 (01) : 239 - 251
  • [26] Public interest in science or bots? Selective amplification of scientific articles on Twitter
    Rahman, Ashiqur
    Mohammadi, Ehsan
    Alhoori, Hamed
    ASLIB JOURNAL OF INFORMATION MANAGEMENT, 2024,
  • [27] Citizen Science on Twitter: Using Data Analytics to Understand Conversations and Networks
    Mazumdar, Suvodeep
    Thakker, Dhavalkumar
    FUTURE INTERNET, 2020, 12 (12): : 1 - 22
  • [28] A Hybrid Approach for the Sentiment Analysis of Turkish Twitter Data
    Shehu, H. A.
    Tokat, S.
    ARTIFICIAL INTELLIGENCE AND APPLIED MATHEMATICS IN ENGINEERING PROBLEMS, 2020, 43 : 182 - 190
  • [29] Detecting Cyberbullying "Hotspots" on Twitter: A Predictive Analytics Approach
    Ho, Shuyuan Mary
    Kao, Dayu
    Chiu-Huang, Ming-Jung
    Li, Wenyi
    Lai, Chung-Jui
    FORENSIC SCIENCE INTERNATIONAL-DIGITAL INVESTIGATION, 2020, 32 (0S):
  • [30] Topical Influential User Analysis with Relationship Strength Estimation in Twitter
    Liu, Xinyue
    Shen, Hua
    Ma, Fenglong
    Liang, Wenxin
    2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), 2014, : 1012 - 1019