Molecular characterizations of variable anisotropic Hardy spaces with applications to boundedness of Calderón–Zygmund operators

被引:0
作者
Jun Liu
机构
[1] China University of Mining and Technology,School of Mathematics
来源
Banach Journal of Mathematical Analysis | 2021年 / 15卷
关键词
Expansive matrix; (variable)Hardy space; Molecule; Calderón–Zygmund operator; 42B35; 42B30; 42B20; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
Let p(·):Rn→(0,∞]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\cdot ):\ \mathbb {R}^n\rightarrow (0,\infty ]$$\end{document} be a variable exponent function satisfying the globally log-Hölder continuous condition and A a general expansive matrix on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^n$$\end{document}. Let HAp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_A^{p(\cdot )}(\mathbb {R}^n)$$\end{document} be the variable anisotropic Hardy space associated with A defined via the non-tangential grand maximal function. In this article, via the known atomic characterization of HAp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_A^{p(\cdot )}(\mathbb {R}^n)$$\end{document}, the author establishes its molecular characterization with the known best possible decay of molecules. As an application, the author obtains a criterion on the boundedness of linear operators on HAp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_A^{p(\cdot )}(\mathbb {R}^n)$$\end{document}, which is used to prove the boundedness of anisotropic Calderón–Zygmund operators on HAp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_A^{p(\cdot )}(\mathbb {R}^n)$$\end{document}. In addition, the boundedness of anisotropic Calderón–Zygmund operators from HAp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_A^{p(\cdot )}(\mathbb {R}^n)$$\end{document} to the variable Lebesgue space Lp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p(\cdot )}(\mathbb {R}^n)$$\end{document} is also presented. All these results are new even in the classical isotropic setting.
引用
收藏
相关论文
共 50 条
  • [41] REAL-VARIABLE CHARACTERIZATIONS OF VARIABLE HARDY SPACES ON LIPSCHITZ DOMAINS OF Rn
    Liu, Xiong
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (03) : 745 - 765
  • [42] Isomorphisms of variable Hardy spaces associated with Schrodinger operators
    Zhang, Junqiang
    Yang, Dachun
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (01) : 39 - 66
  • [43] MOLECULAR CHARACTERIZATION OF ANISOTROPIC WEAK MUSIELAK-ORLICZ HARDY SPACES AND THEIR APPLICATIONS
    Sun, Ruirui
    Li, Jinxia
    Li, Baode
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (05) : 2377 - 2395
  • [44] LITTLEWOOD-PALEY CHARACTERIZATIONS OF ANISOTROPIC HARDY-LORENTZ SPACES
    Liu, Jun
    Yang, Dachun
    Yuan, Wen
    ACTA MATHEMATICA SCIENTIA, 2018, 38 (01) : 1 - 33
  • [45] LITTLEWOOD-PALEY CHARACTERIZATIONS OF ANISOTROPIC HARDY-LORENTZ SPACES
    刘军
    杨大春
    袁文
    Acta Mathematica Scientia, 2018, (01) : 1 - 33
  • [46] Weakly Strongly Singular Integral Operators on Anisotropic Hardy Spaces and Their Dual Operators
    Yong DING School of Mathematical Sciences
    Acta Mathematica Sinica(English Series), 2009, 25 (11) : 1849 - 1864
  • [47] Weakly strongly singular integral operators on anisotropic Hardy spaces and their dual operators
    Yong Ding
    Sen Hua Lan
    Acta Mathematica Sinica, English Series, 2009, 25 : 1849 - 1864
  • [48] Weakly strongly singular integral operators on anisotropic Hardy spaces and their dual operators
    Ding, Yong
    Lan, Sen Hua
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (11) : 1849 - 1864
  • [49] Boundedness of Generalized Riesz Transforms on Orlicz-Hardy Spaces Associated to Operators
    Cao, Jun
    Chang, Der-Chen
    Yang, Dachun
    Yang, Sibei
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2013, 76 (02) : 225 - 283
  • [50] VARIABLE HARDY SPACES ASSOCIATED WITH OPERATORS SATISFYING DAVIES-GAFFNEY ESTIMATES
    Yang, Dachun
    Zhang, Junqiang
    Zhuo, Ciqiang
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2018, 61 (03) : 759 - 810