Molecular characterizations of variable anisotropic Hardy spaces with applications to boundedness of Calderón–Zygmund operators

被引:0
|
作者
Jun Liu
机构
[1] China University of Mining and Technology,School of Mathematics
来源
Banach Journal of Mathematical Analysis | 2021年 / 15卷
关键词
Expansive matrix; (variable)Hardy space; Molecule; Calderón–Zygmund operator; 42B35; 42B30; 42B20; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
Let p(·):Rn→(0,∞]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\cdot ):\ \mathbb {R}^n\rightarrow (0,\infty ]$$\end{document} be a variable exponent function satisfying the globally log-Hölder continuous condition and A a general expansive matrix on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^n$$\end{document}. Let HAp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_A^{p(\cdot )}(\mathbb {R}^n)$$\end{document} be the variable anisotropic Hardy space associated with A defined via the non-tangential grand maximal function. In this article, via the known atomic characterization of HAp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_A^{p(\cdot )}(\mathbb {R}^n)$$\end{document}, the author establishes its molecular characterization with the known best possible decay of molecules. As an application, the author obtains a criterion on the boundedness of linear operators on HAp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_A^{p(\cdot )}(\mathbb {R}^n)$$\end{document}, which is used to prove the boundedness of anisotropic Calderón–Zygmund operators on HAp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_A^{p(\cdot )}(\mathbb {R}^n)$$\end{document}. In addition, the boundedness of anisotropic Calderón–Zygmund operators from HAp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_A^{p(\cdot )}(\mathbb {R}^n)$$\end{document} to the variable Lebesgue space Lp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p(\cdot )}(\mathbb {R}^n)$$\end{document} is also presented. All these results are new even in the classical isotropic setting.
引用
收藏
相关论文
共 50 条
  • [31] Molecular Characterization of Anisotropic Musielak–Orlicz Hardy Spaces and Their Applications
    Bao De LI
    Xing Ya FAN
    Zun Wei FU
    Da Chun YANG
    Acta Mathematica Sinica,English Series, 2016, 32 (11) : 1391 - 1414
  • [32] Discrete Paraproduct Operators on Variable Hardy Spaces
    Tan, Jian
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2020, 63 (02): : 304 - 317
  • [33] Molecular Characterization of Anisotropic Musielak-Orlicz Hardy Spaces and Their Applications
    Li, Bao De
    Fan, Xing Ya
    Fu, Zun Wei
    Yang, Da Chun
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (11) : 1391 - 1414
  • [34] Maximal function characterizations for variable Hardy spaces on spaces of homogeneous type
    He, Yao
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2025, 48 (02)
  • [35] Boundedness of Calderon-Zygmund operators on special John-Nirenberg-Campanato and Hardy-type spaces via congruent cubes
    Jia, Hongchao
    Tao, Jin
    Yang, Dachun
    Yuan, Wen
    Zhang, Yangyang
    ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (01)
  • [36] DUAL SPACES AND WAVELET CHARACTERIZATIONS OF ANISOTROPIC MUSIELAK-ORLICZ HARDY SPACES
    Liu, Jun
    Haroske, Dorothee D.
    Yang, Dachun
    Yuan, Wen
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2020, 19 (01) : 106 - 131
  • [37] Boundedness of fractional integral operators on Musielak-Orlicz Hardy spaces
    Huy, Duong Quoc
    Ky, Luong Dang
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (12) : 2340 - 2354
  • [38] Boundedness of Generalized Riesz Transforms on Orlicz–Hardy Spaces Associated to Operators
    Jun Cao
    Der-Chen Chang
    Dachun Yang
    Sibei Yang
    Integral Equations and Operator Theory, 2013, 76 : 225 - 283
  • [39] LUSIN AREA FUNCTION AND MOLECULAR CHARACTERIZATIONS OF MUSIELAK-ORLICZ HARDY SPACES AND THEIR APPLICATIONS
    Hou, Shaoxiong
    Yang, Dachun
    Yang, Sibei
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2013, 15 (06)
  • [40] Convolution operators and variable Hardy spaces on the Heisenberg group
    Rocha, P.
    ACTA MATHEMATICA HUNGARICA, 2024, 174 (02) : 429 - 452