Molecular characterizations of variable anisotropic Hardy spaces with applications to boundedness of Calderón–Zygmund operators

被引:0
|
作者
Jun Liu
机构
[1] China University of Mining and Technology,School of Mathematics
来源
Banach Journal of Mathematical Analysis | 2021年 / 15卷
关键词
Expansive matrix; (variable)Hardy space; Molecule; Calderón–Zygmund operator; 42B35; 42B30; 42B20; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
Let p(·):Rn→(0,∞]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\cdot ):\ \mathbb {R}^n\rightarrow (0,\infty ]$$\end{document} be a variable exponent function satisfying the globally log-Hölder continuous condition and A a general expansive matrix on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^n$$\end{document}. Let HAp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_A^{p(\cdot )}(\mathbb {R}^n)$$\end{document} be the variable anisotropic Hardy space associated with A defined via the non-tangential grand maximal function. In this article, via the known atomic characterization of HAp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_A^{p(\cdot )}(\mathbb {R}^n)$$\end{document}, the author establishes its molecular characterization with the known best possible decay of molecules. As an application, the author obtains a criterion on the boundedness of linear operators on HAp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_A^{p(\cdot )}(\mathbb {R}^n)$$\end{document}, which is used to prove the boundedness of anisotropic Calderón–Zygmund operators on HAp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_A^{p(\cdot )}(\mathbb {R}^n)$$\end{document}. In addition, the boundedness of anisotropic Calderón–Zygmund operators from HAp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_A^{p(\cdot )}(\mathbb {R}^n)$$\end{document} to the variable Lebesgue space Lp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p(\cdot )}(\mathbb {R}^n)$$\end{document} is also presented. All these results are new even in the classical isotropic setting.
引用
收藏
相关论文
共 50 条
  • [21] Atomic Characterization of Musielak-Orlicz-Lorentz Hardy Spaces and Its Applications to Real Interpolation and Boundedness of Calderon-Zygmund Operators
    Jia, Hongchao
    Weisz, Ferenc
    Yang, Dachun
    Yuan, Wen
    Zhang, Yangyang
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (06)
  • [22] Weak Hardy-type spaces associated with ball quasi-Banach function spaces I: Decompositions with applications to boundedness of Calderon-Zygmund operators
    Zhang, Yangyang
    Yang, Dachun
    Yuan, Wen
    Wang, Songbai
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (09) : 2007 - 2064
  • [23] MOLECULAR CHARACTERIZATION OF ANISOTROPIC VARIABLE HARDY-LORENTZ SPACES
    Liu, Xiong
    Qiu, Xiaoli
    Li, Baode
    TOHOKU MATHEMATICAL JOURNAL, 2020, 72 (02) : 211 - 233
  • [24] Calderón-Zygmund Operators on the Predual of a Morrey Space
    Yasuo Komori
    Acta Mathematica Sinica, 2003, 19 : 297 - 302
  • [25] REAL-VARIABLE CHARACTERIZATIONS OF NEW ANISOTROPIC MIXED-NORM HARDY SPACES
    Huang, Long
    Liu, Jun
    Yang, Dachun
    Yuan, Wen
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (06) : 3033 - 3082
  • [26] Weighted variable anisotropic Hardy spaces
    He, Yao
    ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (06)
  • [27] Anisotropic Hardy-Lorentz spaces and their applications
    LIU Jun
    YANG DaChun
    YUAN Wen
    Science China(Mathematics), 2016, 59 (09) : 1669 - 1720
  • [28] Anisotropic Hardy-Lorentz spaces and their applications
    Jun Liu
    DaChun Yang
    Wen Yuan
    Science China Mathematics, 2016, 59 : 1669 - 1720
  • [29] Anisotropic Hardy-Lorentz spaces and their applications
    Liu Jun
    Yang DaChun
    Yuan Wen
    SCIENCE CHINA-MATHEMATICS, 2016, 59 (09) : 1669 - 1720
  • [30] Molecular characterization of anisotropic Musielak–Orlicz Hardy spaces and their applications
    Bao De Li
    Xing Ya Fan
    Zun Wei Fu
    Da Chun Yang
    Acta Mathematica Sinica, English Series, 2016, 32 : 1391 - 1414