Molecular characterizations of variable anisotropic Hardy spaces with applications to boundedness of Calderón–Zygmund operators

被引:0
|
作者
Jun Liu
机构
[1] China University of Mining and Technology,School of Mathematics
来源
Banach Journal of Mathematical Analysis | 2021年 / 15卷
关键词
Expansive matrix; (variable)Hardy space; Molecule; Calderón–Zygmund operator; 42B35; 42B30; 42B20; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
Let p(·):Rn→(0,∞]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\cdot ):\ \mathbb {R}^n\rightarrow (0,\infty ]$$\end{document} be a variable exponent function satisfying the globally log-Hölder continuous condition and A a general expansive matrix on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^n$$\end{document}. Let HAp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_A^{p(\cdot )}(\mathbb {R}^n)$$\end{document} be the variable anisotropic Hardy space associated with A defined via the non-tangential grand maximal function. In this article, via the known atomic characterization of HAp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_A^{p(\cdot )}(\mathbb {R}^n)$$\end{document}, the author establishes its molecular characterization with the known best possible decay of molecules. As an application, the author obtains a criterion on the boundedness of linear operators on HAp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_A^{p(\cdot )}(\mathbb {R}^n)$$\end{document}, which is used to prove the boundedness of anisotropic Calderón–Zygmund operators on HAp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_A^{p(\cdot )}(\mathbb {R}^n)$$\end{document}. In addition, the boundedness of anisotropic Calderón–Zygmund operators from HAp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_A^{p(\cdot )}(\mathbb {R}^n)$$\end{document} to the variable Lebesgue space Lp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p(\cdot )}(\mathbb {R}^n)$$\end{document} is also presented. All these results are new even in the classical isotropic setting.
引用
收藏
相关论文
共 50 条
  • [1] Molecular characterizations of variable anisotropic Hardy spaces with applications to boundedness of Calderon-Zygmund operators
    Liu, Jun
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 15 (01)
  • [2] Atomic Characterization of Musielak–Orlicz–Lorentz Hardy Spaces and Its Applications to Real Interpolation and Boundedness of Calderón–Zygmund Operators
    Hongchao Jia
    Ferenc Weisz
    Dachun Yang
    Wen Yuan
    Yangyang Zhang
    The Journal of Geometric Analysis, 2023, 33
  • [3] Boundedness of Calderón–Zygmund operators on special John–Nirenberg–Campanato and Hardy-type spaces via congruent cubes
    Hongchao Jia
    Jin Tao
    Dachun Yang
    Wen Yuan
    Yangyang Zhang
    Analysis and Mathematical Physics, 2022, 12
  • [4] Weak Hardy-type spaces associated with ball quasi-Banach function spaces I: Decompositions with applications to boundedness of Calderón-Zygmund operators
    Yangyang Zhang
    Dachun Yang
    Wen Yuan
    Songbai Wang
    Science China Mathematics, 2021, 64 : 2007 - 2064
  • [5] Molecular Characterizations of Anisotropic Mixed-Norm Hardy Spaces and Their Applications
    Liu, Jun
    Huang, Long
    Yue, Chenlong
    MATHEMATICS, 2021, 9 (18)
  • [6] Variable Anisotropic Hardy Spaces and Their Applications
    Liu, Jun
    Weisz, Ferenc
    Yang, Dachun
    Yuan, Wen
    TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (05): : 1173 - 1216
  • [7] Wavelet Characterizations of Variable Anisotropic Hardy Spaces
    He, Yao
    Jiao, Yong
    Liu, Jun
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2025, 41 (01) : 304 - 326
  • [8] MOLECULAR CHARACTERIZATIONS AND DUALITIES OF VARIABLE EXPONENT HARDY SPACES ASSOCIATED WITH OPERATORS
    Yang, Dachun
    Zhuo, Ciqiang
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2016, 41 (01) : 357 - 398
  • [9] New molecular characterizations of anisotropic Musielak-Orlicz Hardy spaces and their applications
    Liu, Jun
    Haroske, Dorothee D.
    Yang, Dachun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (02) : 1341 - 1366
  • [10] Littlewood–Paley and Finite Atomic Characterizations of Anisotropic Variable Hardy–Lorentz Spaces and Their Applications
    Jun Liu
    Ferenc Weisz
    Dachun Yang
    Wen Yuan
    Journal of Fourier Analysis and Applications, 2019, 25 : 874 - 922