Biomimetic neural network for modifying biological dynamics during hybrid experiments

被引:15
作者
Ambroise M. [1 ]
Buccelli S. [2 ]
Grassia F. [3 ]
Pirog A. [1 ]
Bornat Y. [1 ]
Chiappalone M. [2 ]
Levi T. [1 ]
机构
[1] IMS Laboratory, University of Bordeaux, Bordeaux
[2] Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa
[3] LTI Laboratory, University of Picardie Jules Verne, Amiens
关键词
Artificial neural network; Bio-hybrid experiments; Biological neural network; CPG; Neuromorphic engineering;
D O I
10.1007/s10015-017-0366-1
中图分类号
学科分类号
摘要
Electrical stimulation of nerve tissue and recording of neural electrical activity are the basis of emerging prostheses and treatments for many neurological disorders. Here we present closed-loop bio-hybrid experiment using in vitro biological neuronal network (BNN) with an artificial neural network (ANN) implemented in a neuromorphic board. We adopted a neuromorphic board which is able to perform real-time event detection and trigger an electrical stimulation of the BNN. This system embeds an ANN, based on Izhikevich neurons which can be put in uni- and bi-directional communication with the BNN. The ANN used in the following experiments was made up of 20 excitatory neurons with inhibition synapse and with synaptic plasticity to design central pattern generator. Open-loop and closed-loop hybrid experiments show that the biological dynamics can be modified. This work can be seen as the first step towards the realization of an innovative neuroprosthesis. © 2017, Euratom: University of Bordeaux; European Union.
引用
收藏
页码:398 / 403
页数:5
相关论文
共 21 条
  • [1] Nicolelis M.A.L., Lebedev M.A., Principles of neural ensemble physiology underlying the operation of brain-machine interfaces, Nat Rev Neurosci, 10, pp. 530-540, (2009)
  • [2] Hochberg L.R., Serruya M.D., Friehs G.M., Mukand J.A., Saleh M., Caplan A.H., Branner A., Chen D., Penn R.D., Donoghue J.P., Neuronal ensemble control of prosthetic devices by a human with tetraplegia, Nature, 442, pp. 164-171, (2006)
  • [3] Hochberg L.R., Bacher D., Jarosiewicz B., Masse N.Y., Simeral J.D., Vogel J., Haddadin S., Liu J., Cash S.S., Van Der Smagt P., Donoghue J.P., Reach and grasp by people with tetraplegia using a neurally controlled robotic arm, Nat Methods, 485, pp. 372-375, (2012)
  • [4] Bonifazi P., Difato F., Massobrio P., Breschi G.L., Pasquale V., Levi T., Goldin M., Bornat Y., Tedesco M., Bisio M., Kanner S., Galron R., Tessadori J., Taverna S., Chiappalone M., In vitro large-scale experimental and theoretical studies for the realization of bi-directional brain-prostheses, Front Neural Circuits, 7, (2013)
  • [5] Levi T., Lewis N., Tomas J., Saighi S., Renaud S., Bornat Y., Alvado L., Neuromimetic integrated circuits, Chap 12, VLSI circuits for biomedical applications, pp. 241-264, (2008)
  • [6] Mahowald M., Douglas R., A silicon neuron, Nature, 1991, pp. 515-518, (1991)
  • [7] Indiveri G., Et al., Neuromorphic silicon neuron circuits, Frontiers in Neuroscience, 5, (2001)
  • [8] Levi T., Lewis N., Tomas J., Fouillat P., IP-based methodology for analog design flow: application on neuromorphic engineering, NEWCAS-TAISA Conference, pp. 343-346, (2008)
  • [9] Frega M., Pasquale V., Tedesco M., Marcoli M., Contestabile A., Nanni M., Bonzano L., Maura G., Chiappalone M., Cortical cultures coupled to micro-electrode arrays: a novel approach to perform in vitro excitotoxicity testing, Neurotoxicol Teratol, 34, pp. 116-127, (2012)
  • [10] Cassidy A., Andreou A.G., Dynamical digital silicon neurons, IEEE biomedical circuits and systems conference, 289-292, pp. 20-22, (2008)