Substep active deep learning framework for image classification

被引:0
作者
Guoqiang Li
Ning Gong
机构
[1] Yanshan University,Key Laboratory of Industrial Computer Control Engineering of Hebei Province
来源
Pattern Analysis and Applications | 2021年 / 24卷
关键词
Convolutional neural network; Active learning; Substep; Image classification;
D O I
暂无
中图分类号
学科分类号
摘要
In image classification, the acquisition of images labels is often expensive and time-consuming. To reduce this labeling cost, active learning is introduced into this field. Although some active learning algorithms have been proposed, they are all single-sampling strategies or combined with multiple-sampling strategies simultaneously (i.e., correlation, uncertainty and label-based measure), without considering the relationship between substep sampling strategies. To this end, we designed a new active learning scheme called substep active deep learning (SADL) for image classification. In SADL, samples were selected by correlation strategy and then determined by the uncertainty and label-based measurement. Finally, it is fed to CNN model training. Experiments were performed with three data sets (i.e., MNIST, Fashion-MNIST and CIFAR-10) to compare against state-of-the-art active learning algorithms, and it can be verified that our substep active deep learning is rational and effective.
引用
收藏
页码:23 / 34
页数:11
相关论文
共 50 条
  • [21] Explorations in Active Learning Applied to Image Classification
    Klimczak, Adriana
    Wenka, Marcel
    Ganzha, Maria
    Paprzycki, Marcin
    BIG DATA ANALYTICS IN ASTRONOMY, SCIENCE, AND ENGINEERING, BDA 2022, 2023, 13830 : 17 - 30
  • [22] Active Learning in Social Context for Image Classification
    Chatzilari, Elisavet
    Nikolopoulos, Spiros
    Kompatsiaris, Yiannis
    Kittler, Josef
    PROCEEDINGS OF THE 2014 9TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, THEORY AND APPLICATIONS (VISAPP 2014), VOL 2, 2014, : 76 - 85
  • [23] Semantic enhanced deep learning for image classification
    Li, Siguang
    Li, Maozhen
    Jiang, Changjun
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2018, 30 (23)
  • [24] A DEEP CURRICULUM LEARNER IN AN ACTIVE LEARNING CYCLE FOR POLSAR IMAGE CLASSIFICATION
    Mousavi, Seyed Hamidreza
    Azimi, Seyed Majid
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 88 - 91
  • [25] SALIC: Social Active Learning for Image Classification
    Chatzilari, Elisavet
    Nikolopoulos, Spiros
    Kompatsiaris, Yiannis
    Kittler, Josef
    IEEE TRANSACTIONS ON MULTIMEDIA, 2016, 18 (08) : 1488 - 1503
  • [26] Realistic Evaluation of Deep Active Learning for Image Classification and Semantic Segmentation
    Mittal, Sudhanshu
    Niemeijer, Joshua
    Cicek, Oezguen
    Tatarchenko, Maxim
    Ehrhardt, Jan
    Schaefer, Joerg P.
    Handels, Heinz
    Brox, Thomas
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2025, : 4294 - 4316
  • [27] An Active Deep Learning Approach for Minimally Supervised PolSAR Image Classification
    Bi, Haixia
    Xu, Feng
    Wei, Zhiqiang
    Xue, Yong
    Xu, Zongben
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (11): : 9378 - 9395
  • [28] MAY THE TORCHER LIGHT OURWAY: A NEGATIVE-ACCELERATED ACTIVE LEARNING FRAMEWORK FOR IMAGE CLASSIFICATION
    Ye, Zhipeng
    Liu, Peng
    Tang, Xianglong
    Zhao, Wei
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 1658 - 1662
  • [29] A Noise Robust Batch Mode Semi-supervised and Active Learning Framework for Image Classification
    Hou, Chaoqun
    Yang, Chenhui
    Ren, Fujia
    Lin, Rongjie
    IMAGE AND GRAPHICS, ICIG 2019, PT I, 2019, 11901 : 541 - 552
  • [30] An Integrated Active Deep Learning Approach for Image Classification from Unlabeled Data with Minimal Supervision
    Abdelwahab, Amira
    Afifi, Ahmed
    Salama, Mohamed
    Kim, Byung-Gyu
    ELECTRONICS, 2024, 13 (01)