Shape-preserving interpolation by splines using vector subdivision

被引:0
|
作者
T. N. T. Goodman
B. H. Ong
机构
[1] The University,Department of Mathematics
[2] University Sains Malaysia,School of Mathematical Sciences
来源
Advances in Computational Mathematics | 2005年 / 22卷
关键词
shape-preserving interpolation; subdivision; splines;
D O I
暂无
中图分类号
学科分类号
摘要
We give a local convexity preserving interpolation scheme using parametricC2 cubic splines with uniform knots produced by a vector subdivision scheme which simultaneously provides the function and its first and second order derivatives. This is also adapted to give a scheme which is both local convexity and local monotonicity preserving when the data values are strictly increasing in thex-direction.
引用
收藏
页码:49 / 77
页数:28
相关论文
共 50 条
  • [1] Shape-preserving interpolation by splines using vector subdivision
    Goodman, TNT
    Ong, BH
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2005, 22 (01) : 49 - 77
  • [2] Spatial shape-preserving interpolation using ν-splines
    Karavelas, MI
    Kaklis, PD
    NUMERICAL ALGORITHMS, 2000, 23 (2-3) : 217 - 250
  • [3] Shape-preserving interpolation by cubic splines
    Yu. S. Volkov
    V. V. Bogdanov
    V. L. Miroshnichenko
    V. T. Shevaldin
    Mathematical Notes, 2010, 88 : 798 - 805
  • [4] Shape-Preserving Interpolation by Cubic Splines
    Volkov, Yu. S.
    Bogdanov, V. V.
    Miroshnichenko, V. L.
    Shevaldin, V. T.
    MATHEMATICAL NOTES, 2010, 88 (5-6) : 798 - 805
  • [5] SHAPE-PRESERVING INTERPOLATION USING QUADRATIC X-SPLINES
    RAMACHANDRAN, MP
    APPLIED MATHEMATICS LETTERS, 1994, 7 (06) : 97 - 100
  • [6] Partial shape-preserving splines
    Li, Qingde
    Tian, Jie
    COMPUTER-AIDED DESIGN, 2011, 43 (04) : 394 - 409
  • [7] Non-uniform shape-preserving subdivision scheme for surface interpolation
    Dong, WL
    Li, JK
    Kuo, CCJ
    IMAGE AND VIDEO COMMUNICATIONS AND PROCESSING 2000, 2000, 3974 : 1016 - 1027
  • [8] Shape-preserving MQ-B-Splines quasi-interpolation
    Zhang, WX
    Wu, ZM
    GEOMETRIC MODELING AND PROCESSING 2004, PROCEEDINGS, 2004, : 85 - 92
  • [9] Shape-preserving interpolation on surfaces via variable-degree splines
    Kaklis, P. D.
    Stamatelopoulos, S.
    Ginnis, A. -A. I.
    COMPUTER AIDED GEOMETRIC DESIGN, 2024, 109
  • [10] Ternary shape-preserving subdivision schemes
    Pitolli, Francesca
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2014, 106 : 185 - 194