Modelling carbon nanocones for selective filter

被引:0
作者
Pakhapoom Sarapat
Ngamta Thamwattana
Barry J. Cox
Duangkamon Baowan
机构
[1] Mahidol University,Department of Mathematics, Faculty of Science
[2] University of Newcastle,School of Mathematical and Physical Sciences
[3] The University of Adelaide,School of Mathematical Sciences
[4] Centre of Excellence in Mathematics,undefined
[5] CHE,undefined
来源
Journal of Mathematical Chemistry | 2020年 / 58卷
关键词
Carbon nanocones; Lennard-Jones potential; Selective filter;
D O I
暂无
中图分类号
学科分类号
摘要
This paper investigates the potential use of carbon nanocones as selective filtration devices. Using a continuum approach and the Lennard-Jones potential, we determine the energy of truncated carbon nanocones interacting with ions (Na+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{+}$$\end{document} and Cl-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-}$$\end{document}) and water molecules. The Verlet algorithm is adopted to determine the dynamics of the ions and the water molecules as a result of the interaction with the nanocones. The acceptance energy is derived to determine the minimum and critical radii of the truncated nanocones that block the ions and allow only water molecules to pass through. Our results show that the channel with apex angle of 19.2∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$19.2^{\circ}$$\end{document} and opening radius in the range 3.368–3.528 Å gives highest suction energy.
引用
收藏
页码:1650 / 1662
页数:12
相关论文
共 50 条
  • [31] Low-energy electronic states of carbon nanocones in an electric field
    Jun-Liang Chen
    Ming-Horng Su
    Chi-Chuan Hwang
    Jian-Ming Lu
    Chia-Chang Tsai
    Nano-Micro Letters, 2010, 2 : 121 - 125
  • [32] Low-energy electronic states of carbon nanocones in an electric field
    Chen, Jun-Liang
    Su, Ming-Horng
    Hwang, Chi-Chuan
    Lu, Jian-Ming
    Tsai, Chia-Chang
    NANO-MICRO LETTERS, 2010, 2 (02) : 121 - 125
  • [33] Molecular dynamics simulation of transversely isotropic elastic properties of carbon nanocones
    Taheri, Seyed Saeid
    Seyyed Fakhrabadi, Mir Masoud
    PHYSICA SCRIPTA, 2021, 96 (03)
  • [34] Continuum study on the oscillatory characteristics of carbon nanocones inside single-walled carbon nanotubes
    Ansari, R.
    Sadeghi, F.
    Darvizeh, M.
    PHYSICA B-CONDENSED MATTER, 2016, 482 : 28 - 37
  • [35] Investigation of elastic and buckling properties of carbon nanocones using molecular mechanics approach
    Fakhrabadi, Mir Masoud Seyyed
    Khani, Navid
    Omidvar, Rose
    Rastgoo, Abbas
    COMPUTATIONAL MATERIALS SCIENCE, 2012, 61 : 248 - 256
  • [37] ON THE MECHANICS OF ELLIPSOIDAL FULLERENES INSIDE OPEN CARBON NANOCONES: A NOVEL NUMERICAL APPROACH
    Ansari, R.
    Sadeghi, F.
    Shojaei, M. Faghih
    NANO, 2014, 9 (03)
  • [38] Exploring the mechanism of nerve agent (Tabun and Sarin) adsorption on carbon nanocones: Computational insights
    Haziri V.
    Berisha A.
    Haliti M.
    Kaya S.
    Thaçi V.
    Seydou M.
    Journal of Molecular Liquids, 2024, 407
  • [39] Copper-Capped Carbon Nanocones on Silicon: Plasma-Enabled Growth Control
    Kumar, Shailesh
    Levchenko, Igor
    Farrant, David
    Keidar, Michael
    Kersten, Holger
    Ostrikov, Kostya
    ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (11) : 6021 - 6029
  • [40] Characterizing the mechanical properties of carbon nanocones using an accurate spring-mass model
    Ansari, R.
    Mahmoudinezhad, E.
    COMPUTATIONAL MATERIALS SCIENCE, 2015, 101 : 260 - 266