Families of periodic orbits in resonant reversible systems

被引:0
作者
Maurício Firmino Silva Lima
Marco Antonio Teixeira
机构
[1] Universidade Federal do ABC,CMCC
[2] Universidade Estadual de Campinas,Departamento de Matemática
来源
Bulletin of the Brazilian Mathematical Society, New Series | 2009年 / 40卷
关键词
equilibrium point; periodic orbit; reversibility; normal form; resonance; 34C25; 37C25; 37C14;
D O I
暂无
中图分类号
学科分类号
摘要
We study the dynamics near an equilibrium point p0 of a Z2(ℝ)-reversible vector field in ℝ2n with reversing symmetry R satisfying R2 = I and dimFix(R) = n. We deal with one-parameter families of such systems Xλ such that X0 presents at p0 a degenerate resonance of type 0: p: q. We are assuming that the linearized system of X0 (at p0) has as eigenvalues: λ1 = 0 and λj = ±iαj, j = 2, … n. Our main concern is to find conditions for the existence of one-parameter families of periodic orbits near the equilibrium.
引用
收藏
页码:511 / 537
页数:26
相关论文
共 21 条
[1]  
Devaney R.L.(1976)Reversible diffeomorphisms and flows Trans. Am. Math. Soc. 218 89-113
[2]  
Golubitsky M.(1991)Time-reversibility and particle sedimentation SIAM J. Appl. Math. 51 49-72
[3]  
Krupa M.(1992)Water Waves for Small Surface Tension: an approach via normal form Proc. Royal Soc. Edinburg 112A 267-299
[4]  
Lim C.(2007)Degenerate resonances and branching of periodic orbits Annali di Matematica 187 105-117
[5]  
Iooss G.(1996)A General Reduction Method for Periodic Solutions in Conservative and Reversible Systems J. Dyn. Diff. Equations 8 71-102
[6]  
Kirchgässner K.(1998)Time-reversal symmetry in dynamical systems: A survey Physica D 112 1-39
[7]  
Jacquemard A.(1990)Existence of nonlinear normal modes of symmetric Hamiltonian systems Nonlinearity 3 695-730
[8]  
Lima M.F.S.(1996)Periodic orbits near equilibria and theorem by Alan Weinstein Commun. Pure Appl. Math. 29 727-747
[9]  
Teixeira M.A.(1997)Bifurcations of Symmetric Periodic Orbits near Equilibrium in Reversible Systems Int. J. Bifurcation and Chaos 7 569-584
[10]  
Knobloch J.(2001)The center-focus problem and reversibility J. Differential Equations 174 237-251