Design of Novel Precipitate-Strengthened Al-Co-Cr-Fe-Nb-Ni High-Entropy Superalloys

被引:0
|
作者
Stoichko Antonov
Martin Detrois
Sammy Tin
机构
[1] Illinois Institute of Technology,
[2] ORISE,undefined
[3] National Energy Technology Laboratory,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A series of non-equiatomic Al-Co-Cr-Fe-Nb-Ni high-entropy alloys, with varying levels of Co, Nb and Fe, were investigated in an effort to obtain microstructures similar to conventional Ni-based superalloys. Elevated levels of Co were observed to significantly decrease the solvus temperature of the γ′ precipitates. Both Nb and Co in excessive concentrations promoted the formation of Laves and NiAl phases that formed either during solidification and remained undissolved during homogenization or upon high-temperature aging. Lowering the content of Nb, Co, or Fe prevented the formation of the eutectic type Laves. In addition, lowering the Co content resulted in a higher number density and volume fraction of the γ′ precipitates, while increasing the Fe content led to the destabilization of the γ′ precipitates. Various aging treatments were performed which led to different size distributions of the strengthening phase. Results from the microstructural characterization and hardness property assessments of these high-entropy alloys were compared to a commercial, high-strength Ni-based superalloy RR1000. Potentially, precipitation-strengthened high-entropy alloys could find applications replacing Ni-based superalloys as structural materials in power generation applications.
引用
收藏
页码:305 / 320
页数:15
相关论文
共 50 条
  • [31] Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys
    Tsai, K. -Y.
    Tsai, M. -H.
    Yeh, J. -W.
    ACTA MATERIALIA, 2013, 61 (13) : 4887 - 4897
  • [32] High-Temperature Oxidation Behavior of Al-Co-Cr-Ni-(Fe or Si) Multicomponent High-Entropy Alloys
    T. M. Butler
    J. P. Alfano
    R. L. Martens
    M. L. Weaver
    JOM, 2015, 67 : 246 - 259
  • [33] High-Temperature Oxidation Behavior of Al-Co-Cr-Ni-(Fe or Si) Multicomponent High-Entropy Alloys
    Butler, T. M.
    Alfano, J. P.
    Martens, R. L.
    Weaver, M. L.
    JOM, 2015, 67 (01) : 246 - 259
  • [34] Corrosion and passive behaviors of the Co-Cr-Fe-Ni-Nb eutectic high-entropy alloys in different electrolyte solutions
    Zhang, Fengyi
    Zhang, Lijun
    Wei, Xueming
    Zhang, Chunzhi
    Jia, Qixiang
    Sun, Kai
    Duan, Dongtao
    Li, Gong
    INTERMETALLICS, 2025, 177
  • [35] On Sluggish Diffusion in Fcc Al-Co-Cr-Fe-Ni High-Entropy Alloys: An Experimental and Numerical Study
    Li, Qin
    Chen, Weimin
    Zhong, Jing
    Zhang, Lijun
    Chen, Qing
    Liu, Zi-Kui
    METALS, 2018, 8 (01)
  • [36] Machine learning assisted optimization of tribological parameters of Al-Co-Cr-Fe-Ni high-entropy alloy
    Vashistha, Saurabh
    Mahanta, Bashista Kumar
    Singh, Vivek K.
    Singh, Shailesh Kumar
    MATERIALS AND MANUFACTURING PROCESSES, 2023, 38 (16) : 2093 - 2106
  • [37] Strengthening Induced by MagnetoChemical Transition in Al-Doped Fe-Cr-Co-Ni High-Entropy Alloys
    Huang, Shuo
    Li, Wei
    Holmstrom, Erik
    Vitos, Levente
    PHYSICAL REVIEW APPLIED, 2018, 10 (06):
  • [38] Effects of Cr/Ni ratio on physical properties of Cr-Mn-Fe-Co-Ni high-entropy alloys
    Wagner, Christian
    Ferrari, Alberto
    Schreuer, Jurgen
    Couzinie, Jean-Philippe
    Ikeda, Yuji
    Koermann, Fritz
    Eggeler, Gunther
    George, Easo P.
    Laplanche, Guillaume
    ACTA MATERIALIA, 2022, 227
  • [39] Microstructure and mechanical properties of Al-Co-Cr-Fe-Ni-(Nb-Ti) high entropy alloys
    Ayrenk, A.
    Kalay, I
    PHILOSOPHICAL MAGAZINE, 2022, 102 (19) : 1961 - 1973
  • [40] Triple-Phase Eutectic High-Entropy Alloy: Al10Co18Cr18Fe18Nb10Ni26
    Xi Jin
    Juan Bi
    Yuxin Liang
    Junwei Qiao
    Bangsheng Li
    Metallurgical and Materials Transactions A, 2021, 52 : 1314 - 1320