A Uniqueness Theorem for Meromorphic Functions Concerning Total Derivatives in Several Complex Variables

被引:0
作者
Ling Xu
Tingbin Cao
机构
[1] Nanchang University,Department of Mathematics
[2] Jiangxi Science and Technology Normal University,School of Mathematics and Computer Sciences
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2020年 / 43卷
关键词
Meromorphic functions; Uniqueness problem; Nevanlinna theory; Total derivative; Several complex variables; 30D35; 32H30;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by many differences for the total derivative between entire functions and meromorphic functions, we mainly investigate the uniqueness problems for meromorphic functions in several complex variables concerning the total derivatives. Let f and g be two nonconstant meromorphic functions on Cm,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^{m},$$\end{document}k be a positive integer such that f=0⇔g=0,Dkf=∞⇔Dkg=∞,Dkf=1⇔Dkg=1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f=0\Leftrightarrow g = 0, D^{k}f=\infty \Leftrightarrow D^{k}g=\infty , D^{k}f=1\Leftrightarrow D^{k}g=1.$$\end{document} We get that if 2δ(0,f)+(k+4)Θ(∞,f)>k+5,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\delta (0, f)+(k+4)\varTheta (\infty , f)>k+5,$$\end{document} then Dkf-1Dkg-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{D^{k}f-1}{D^{k}g-1}$$\end{document} is a nonzero constant. This is an extension of a uniqueness theorem for entire functions due to L. Jin. There are several examples to show that our result is sharp.
引用
收藏
页码:3923 / 3940
页数:17
相关论文
共 35 条
[1]  
Berenstein C(1995)Exponential sums and shared values for meromorphic functions in several complex variables Adv. Math. 115 201-220
[2]  
Chang DC(2016)Normality criteria for a family of holomorphic functions concerning the total derivative in several complex variables J. Korean Math. Soc. 53 1391-1409
[3]  
Li BQ(2017)Value distribution and normality of meromorphic functions involving partial sharing of small functions Turk. J. Math. 41 404-411
[4]  
Cao TB(2017)Research questions on meromorphic functions and complex differential equations Comput. Methods Funct. Theory 17 195-209
[5]  
Liu ZX(2018)Meromorphic functions that share four or five pairs of values Comput. Methods Funct. Theory 18 239-258
[6]  
Charak KS(2003)Extended Ces‘aro operators on mixed norm spaces Proc. Am. Math. Soc. 131 2171-2179
[7]  
Sharma S(1996)Uniqueness of meromorphic functions on Complex Vari. 30 235-270
[8]  
Gundersen GG(2004)A unicity theorem for entire functions of several complex variables Chin. Ann. Math. Ser. B. 25 483-492
[9]  
Gundersen GG(2003)Theorems of Picard type for entire functions of several complex variables Kodai Math. J. 26 221-229
[10]  
Steinmetz N(2017)Uniqueness of meromorphic functions with their homogeneous and linear differential polynomials sharing a small function Bull. Korean Math. Soc. 54 825-838