Global existence and optimal decay rates for a generic non--conservative compressible two--fluid model

被引:0
作者
Yin Li
Huaqiao Wang
Guochun Wu
Yinghui Zhang
机构
[1] Shaoguan University,Faculty of Education
[2] Chongqing University,College of Mathematics and Statistics
[3] Huaqiao University,Fujian Province University Key Laboratory of Computational Science, School of Mathematical Sciences
[4] Guangxi Normal University,Center for Applied Mathematics of Guangxi
来源
Journal of Mathematical Fluid Mechanics | 2023年 / 25卷
关键词
Non-conservative two–phase fluid model; Optimal decay rates; Compressible; 76T10; 76N10.;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate global existence and optimal decay rates of a generic non-conservative compressible two–fluid model with general constant viscosities and capillary coefficients, and our main purpose is three–fold: First, for any integer ℓ≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \ge 3$$\end{document}, we show that the densities and velocities converge to their corresponding equilibrium states at the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} rate (1+t)-34\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+t)^{-\frac{3}{4}}$$\end{document}, and the k(∈[1,ℓ]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in [1, \ell ]$$\end{document})–order spatial derivatives of them converge to zero at the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} rate (1+t)-34-k2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+t)^{-\frac{3}{4}-\frac{k}{2}}$$\end{document}, which are the same as ones of the compressible Navier–Stokes–Korteweg system. This can be regarded as non-straightforward generalization from the compressible Navier–Stokes–Korteweg system to the two–fluid model. Compared to the compressible Navier–Stokes–Korteweg system, many new mathematical challenges occur since the corresponding model is non-conservative, and its nonlinear structure is very terrible, and the corresponding linear system cannot be diagonalizable. One of key observations here is that to tackle with the strongly coupling terms, we will introduce the linear combination of the fraction densities (β+α+ρ++β-α-ρ-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta ^+\alpha ^+\rho ^++\beta ^-\alpha ^-\rho ^-$$\end{document}), and explore its good regularity, which is particularly better than ones of two fraction densities (α±ρ±\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ^\pm \rho ^\pm $$\end{document}) themselves. Second, the linear combination of the fraction densities (β+α+ρ++β-α-ρ-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta ^+\alpha ^+\rho ^++\beta ^-\alpha ^-\rho ^-$$\end{document}) converges to its corresponding equilibrium state at the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} rate (1+t)-34\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+t)^{-\frac{3}{4}}$$\end{document}, and its k(∈[1,ℓ]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in [1, \ell ]$$\end{document})–order spatial derivative converges to zero at the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} rate (1+t)-34-k2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+t)^{-\frac{3}{4}-\frac{k}{2}}$$\end{document}, but the fraction densities (α±ρ±\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ^\pm \rho ^\pm $$\end{document}) themselves converge to their corresponding equilibrium states at the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} rate (1+t)-14\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+t)^{-\frac{1}{4}}$$\end{document}, and the k(∈[1,ℓ]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in [1, \ell ]$$\end{document})–order spatial derivatives of them converge to zero at the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} rate (1+t)-14-k2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+t)^{-\frac{1}{4}-\frac{k}{2}}$$\end{document}, which are slower than ones of their linear combination (β+α+ρ++β-α-ρ-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta ^+\alpha ^+\rho ^++\beta ^-\alpha ^-\rho ^-$$\end{document}) and the densities. We think that this phenomenon should owe to the special structure of the system. Finally, for well–chosen initial data, we also prove the lower bounds on the decay rates, which are the same as those of the upper decay rates. Therefore, these decay rates are optimal for the compressible two–fluid model.
引用
收藏
相关论文
共 53 条
  • [1] Bian DF(2014)Vanishing capillarity limit of the compressible fluid model of Korteweg type to the Navier–Stokes equations SIAM J. Math. Anal. 46 1633-1650
  • [2] Yao L(2010)Global weak solutions to a generic two-fluid model Arch. Rational Mech. Anal. 196 599-6293
  • [3] Zhu CJ(2012)Global weak solutions to one-dimensional non-conservative viscous compressible two-phase system Commun. Math. Phys. 309 737-755
  • [4] Bresch D(2016)Decay rates of a nonconservative compressible generic two-fluid model SIAM J. Math. Anal. 48 470-512
  • [5] Desjardins B(2000)Global existence in critical spaces for compressible Navier–Stokes equations Invent. Math. 141 579-614
  • [6] Ghidaglia J-M(2007)Optimal convergence rates for the compressible Navier–Stokes equations with potential forces Math. Models Methods Appl. Sci. 17 737-758
  • [7] Grenier E(2016)Global well-posedness and decay rates of strong solutions to a non-conservative compressible two-fluid model Arch. Rational Mech. Anal. 221 2352-2386
  • [8] Bresch D(2012)Decay of dissipative equations and negative Sobolev spaces Comm. Partial Differ. Equ. 37 2165-2208
  • [9] Huang XD(2020)Existence of smooth solutions for the compressible barotropic Navier–Stokes-Korteweg system without increasing pressure law Math. Meth. Appl. Sci. 43 5073-5076
  • [10] Li J(2021)The J. Math. Pures Appl. 9 146-184