Abelian difference sets with the symmetric difference property

被引:0
|
作者
James A. Davis
J. J. Hoo
Connor Kissane
Ziming Liu
Calvin Reedy
Kartikey Sharma
Ken Smith
Yiwei Sun
机构
[1] University of Richmond,Department of Mathematics and Computer Science
[2] Sam Houston State University,Department of Mathematics and Statistics
来源
Designs, Codes and Cryptography | 2021年 / 89卷
关键词
Symmetric difference property; Symmetric design; Difference set; Error correcting code; 05B10;
D O I
暂无
中图分类号
学科分类号
摘要
A (v,k,λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(v,k,\lambda )$$\end{document} symmetric design is said to have the symmetric difference property (SDP) if the symmetric difference of any three blocks is either a block or the complement of a block. The designs associated to the symplectic difference sets introduced by Kantor (J Algebra 33:43–58, 1975) have the SDP. Parker (J Comb Theory Ser A 67:23–43, 1994) claimed that the symplectic design on 64 points is the only SDP design on 64 points admitting an abelian regular automorphism group (an abelian difference set). We show in this paper that there is an SDP design on 64 points that is not isomorphic to the symplectic design and yet admits the group C8×C4×C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_8 \times C_4 \times C_2$$\end{document} as a regular automorphism group. This abelian difference set is the first in an infinite family of abelian difference sets whose designs have the SDP and yet are not isomorphic to the symplectic designs of the same order. We define a new method for establishing the non-isomorphism of the two families.
引用
收藏
页码:517 / 523
页数:6
相关论文
共 50 条
  • [1] Abelian difference sets with the symmetric difference property
    Davis, James A.
    Hoo, J. J.
    Kissane, Connor
    Liu, Ziming
    Reedy, Calvin
    Sharma, Kartikey
    Smith, Ken
    Sun, Yiwei
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (03) : 517 - 523
  • [2] Polynomial Criterion for Abelian Difference Sets
    Keskar, Pradipkumar H.
    Kumari, Priyanka
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (01) : 233 - 249
  • [3] Polynomial Criterion for Abelian Difference Sets
    Pradipkumar H. Keskar
    Priyanka Kumari
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 233 - 249
  • [4] On reversible abelian Hadamard difference sets
    Xiang, Q
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1998, 73 (1-2) : 409 - 416
  • [5] Difference Sets Corresponding to a Class of Symmetric Designs
    Ma S.L.
    Schmidt B.
    Designs, Codes and Cryptography, 1997, 10 (2) : 223 - 236
  • [6] Abelian difference sets of order n dividing λ
    Arasu, K. T.
    Chen, Yu Qing
    Dillon, J. F.
    Liu, Xiaoyu
    Player, Kevin J.
    DESIGNS CODES AND CRYPTOGRAPHY, 2007, 44 (1-3) : 307 - 319
  • [7] Abelian difference sets of order n dividing λ
    K. T. Arasu
    Yu Qing Chen
    J. F. Dillon
    Xiaoyu Liu
    Kevin J. Player
    Designs, Codes and Cryptography, 2007, 44 : 307 - 319
  • [8] ABELIAN DIFFERENCE SETS AS LATTICE COVERINGS AND LATTICE TILINGS
    Kovacevic, Mladen
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 106 (02) : 177 - 184
  • [9] Abelian Difference Sets Without Self-conjugacy
    Arasu K.T.
    Ma S.L.
    Designs, Codes and Cryptography, 1998, 15 (3) : 223 - 230
  • [10] GRAPHS AND SYMMETRIC DESIGNS CORRESPONDING TO DIFFERENCE SETS IN GROUPS OF ORDER 96
    Braic, Snjezana
    Golemac, Anka
    Mandic, Josko
    Vucicic, Tanja
    GLASNIK MATEMATICKI, 2010, 45 (01) : 1 - 14