On Different Ways of Being Equal

被引:0
作者
Bruno Bentzen
机构
[1] Carnegie Mellon University,Department of Philosophy
来源
Erkenntnis | 2022年 / 87卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to present a constructive solution to Frege’s puzzle (largely limited to the mathematical context) based on type theory. Two ways in which an equality statement may be said to have cognitive significance are distinguished. One concerns the mode of presentation of the equality, the other its mode of proof. Frege’s distinction between sense and reference, which emphasizes the former aspect, cannot adequately explain the cognitive significance of equality statements unless a clear identity criterion for senses is provided. It is argued that providing a solution based on proofs is more satisfactory from the standpoint of constructive semantics.
引用
收藏
页码:1809 / 1830
页数:21
相关论文
共 14 条
  • [1] Awodey S(2014)Structuralism, Invariance, and Univalence Philosophia Mathematica 22 1-11
  • [2] Bentzen B(2020)What types should not be Philosophia Mathematica 28 60-76
  • [3] Frege G(1892)Über Sinn und Bedeutung Zeitschrift für Philosophie und philosophische Kritik 100 25-50
  • [4] Heyting A(1931)Die intuitionistische Grundlegung der Mathematik Erkenntnis 2 106-115
  • [5] Ladyman J(2019)Universes and Univalence in Homotopy Type Theory Review of Symbolic Logic 12 426-455
  • [6] Presnell S(1987)Truth of a proposition, evidence of a judgement, validity of a proof Synthese 73 407-420
  • [7] Martin-Löf P(1996)On the meanings of the logical constants and the justifications of the logical laws Nordic J. Philos. Logic 1 11-60
  • [8] Martin-Löf P(1997)Wahrheitswerte als gegenstände und die unterscheidung zwischen sinn und bedeutung Kritisches Jahrbuch der Philosophie 2 69-118
  • [9] Ruffino M(1998)Building up a toolbox for martin-löf’s type theory: subset theory Twenty five years of Constructive Type Theory 36 221-70
  • [10] Sambin G(1993)Questions of Proof. Manuscrito 16 47-314