Millimeter and submillimeter EPR spectroscopy

被引:0
作者
A. A. Konovalov
V. F. Tarasov
机构
[1] E. K. Zavoisky Physico-Technical Institute of the Kazan’ Scientific Center of the Russian Academy of Sciences,
来源
Radiophysics and Quantum Electronics | 2007年 / 50卷
关键词
Electron Paramagnetic Resonance; Microwave Radiation; Electron Paramagnetic Resonance Spectrum; Forsterite; Paramagnetic Center;
D O I
暂无
中图分类号
学科分类号
摘要
For a long time, the electron paramagnetic resonance (EPR) spectrometers have been operated in X and Q bands with wavelengths of microwave radiation about 3 cm and 8 mm. Increasing the operating frequency improves the basic parameters of an EPR spectrometer. In view of this, there has recently been rapid development of high-frequency EPR spectroscopy, including the submillimeter-wave range, related to significant progress in the millimeter-and submillimeterwave technique. This paper discusses characteristic features, application areas, and the state of the art of the experimental technique of EPR spectroscopy in the millimeter-wave range and the short-wavelength region of the millimeter-wave range. The design features of the high-frequency EPR spectrometer operated in the frequency range 65–1500 GHz, which was created at the E. K. Zavoisky Physico-Technical Institute of the Kazan’ Scientific Center of the Russian Academy of Sciences, are presented. The results of studying the structure of the paramagnetic centers formed by impurity Ho3+ ions in synthetic forsterite (Mg2SiO4), obtained by the method of tunable high-frequency EPR spectroscopy, are reported.
引用
收藏
页码:813 / 822
页数:9
相关论文
共 50 条
[31]   SIMULTANEOUS MULTISITE EPR SPECTROSCOPY IN-VIVO [J].
SMIRNOV, AI ;
NORBY, SW ;
CLARKSON, RB ;
WALCZAK, T ;
SWARTZ, HM .
MAGNETIC RESONANCE IN MEDICINE, 1993, 30 (02) :213-220
[32]   EPR Spectroscopy in Environmental Lichen-Indication [J].
Bondarenko, P. V. ;
Le Thi Bich Nguyet ;
Zhuravleva, S. E. ;
Trukhan, E. M. .
JOURNAL OF APPLIED SPECTROSCOPY, 2017, 84 (04) :646-649
[33]   Principles and applications of EPR spectroscopy in the chemical sciences [J].
Roessler, Maxie M. ;
Salvadori, Enrico .
CHEMICAL SOCIETY REVIEWS, 2018, 47 (08) :2534-2553
[34]   Monitoring enzymatic ATP hydrolysis by EPR spectroscopy [J].
Hacker, Stephan M. ;
Hintze, Christian ;
Marx, Andreas ;
Drescher, Malte .
CHEMICAL COMMUNICATIONS, 2014, 50 (55) :7262-7264
[35]   EPR spectroscopy of the manganese cluster of photosystem II [J].
Haddy, Alice .
PHOTOSYNTHESIS RESEARCH, 2007, 92 (03) :357-368
[36]   High-frequency tunable EPR spectroscopy of Cr3+ in synthetic forsterite [J].
G. S. Shakurov ;
V. F. Tarasov .
Applied Magnetic Resonance, 2001, 21 :597-605
[37]   Dielectric Ceramic EPR Resonators for Low Temperature Spectroscopy at X-band Frequencies [J].
Stefan Friedländer ;
Oleg Ovchar ;
Horst Voigt ;
Rolf Böttcher ;
Anatolii Belous ;
Andreas Pöppl .
Applied Magnetic Resonance, 2015, 46 :33-48
[38]   Detection of glass foreign bodies in soft tissues with low-frequency EPR spectroscopy [J].
B. Gallez ;
R. Debuyst .
Applied Magnetic Resonance, 2001, 20 :579-582
[39]   Investigation by EPR and ENDOR spectroscopy of the novel 4Fe ferredoxin fromPyrococcus furiosus [J].
J. Telser ;
H. -I. Lee ;
E. T. Smith ;
H. Huang ;
P. Brereton ;
M. W. W. Adams ;
R. C. Conover ;
M. K. Johnson ;
B. M. Hoffman .
Applied Magnetic Resonance, 1998, 14 :305-321
[40]   High-Frequency EPR Spectroscopy of Tb3+ Ions in Synthetic Forsterite [J].
A. A. Konovalov ;
D. A. Lis ;
K. A. Subbotin ;
V. F. Tarasov ;
E. V. Zharikov .
Applied Magnetic Resonance, 2014, 45 :193-206