Local behaviour of singular solutions for nonlinear elliptic equations in divergence form

被引:0
作者
B. Brandolini
F. Chiacchio
F. C. Cîrstea
C. Trombetti
机构
[1] Università degli Studi di Napoli “Federico II”,Dipartimento di Matematica e Applicazioni “R. Caccioppoli”
[2] The University of Sydney,School of Mathematics and Statistics
来源
Calculus of Variations and Partial Differential Equations | 2013年 / 48卷
关键词
35J60; 35B40; 35J25;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the following class of nonlinear elliptic equations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{array}{ll}{-}{\rm div}(\mathcal{A}(|x|)\nabla u) +u^q=0\quad {\rm in}\; B_1(0)\setminus\{0\}, \end{array}$$\end{document}where q > 1 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}}$$\end{document} is a positive C1(0,1] function which is regularly varying at zero with index \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\vartheta}$$\end{document} in (2−N,2). We prove that all isolated singularities at zero for the positive solutions are removable if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Phi\not\in L^q(B_1(0))}$$\end{document} , where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Phi}$$\end{document} denotes the fundamental solution of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-{\rm div}(\mathcal{A}(|x|)\nabla u)=\delta_0}$$\end{document} in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal D'(B_1(0))}$$\end{document} and δ0 is the Dirac mass at 0. Moreover, we give a complete classification of the behaviour near zero of all positive solutions in the more delicate case that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Phi\in L^q(B_1(0))}$$\end{document} . We also establish the existence of positive solutions in all the categories of such a classification. Our results apply in particular to the model case \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}(|x|)=|x|^\vartheta}$$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\vartheta\in (2-N,2)}$$\end{document} .
引用
收藏
页码:367 / 393
页数:26
相关论文
共 32 条
[1]  
Brezis H.(1979)Long range atomic potentials in Thomas-Fermi theory Commun. Math. Phys. 65 231-246
[2]  
Lieb E.H(1987)Singular solutions for some semilinear elliptic equations Arch. Ration. Mech. Anal. 99 249-259
[3]  
Brezis H.(1980)Removable singularities for some nonlinear elliptic equations Arch. Ration. Mech. Anal. 75 1-6
[4]  
Oswald L.(2009)On trichotomy of positive singular solutions associated with the Hardy–Sobolev operator C. R. Acad. Sci. Paris I 347 153-158
[5]  
Brezis H.(2007)Asymptotic behavior of solutions of semilinear elliptic equations near an isolated singularity J. Funct. Anal. 250 317-346
[6]  
Véron L.(2010)Isolated singularities for weighted quasilinear elliptic equations J. Funct. Anal. 259 174-202
[7]  
Chaudhuri N.(2009)Fundamental solutions and two properties of elliptic maximal and minimal operators Trans. Am. Math. Soc. 361 5721-5736
[8]  
Cîrstea F.C.(1986)Singular solutions of some quasilinear elliptic equations Arch. Ration. Mech. Anal. 96 359-387
[9]  
Cîrstea F.C.(1991)Local properties of stationary solutions of some nonlinear singular Schrödinger equations Rev. Mat. Iberoamericana 7 65-114
[10]  
Du Y.(2010)Solutions of Aronsson equation near isolated points Calc. Var. 37 303-328